Dieses Dokument richtet sich an Architekten, Entwickler und Administratoren, die Arbeitslasten in Google Cloudplanen, entwerfen, bereitstellen und verwalten.
Die Empfehlungen in diesem Säule können Ihrem Unternehmen helfen, effizient zu arbeiten, die Kundenzufriedenheit zu verbessern, den Umsatz zu steigern und die Kosten zu senken.
Beispiel: Wenn die Backend-Verarbeitungszeit einer Anwendung abnimmt, genießen Nutzer schnellere Antwortzeiten, was zu einer höheren Nutzerbindung und mehr Umsatz führen kann.
Bei der Leistungsoptimierung kann es zu einem Kompromiss zwischen Leistung und Kosten kommen. Manchmal kann die Leistungsoptimierung jedoch helfen, die Kosten zu senken. Wenn die Last zunimmt, kann Autoscaling beispielsweise für eine vorhersagbare Leistung sorgen, da die Systemressourcen nicht überlastet werden. Außerdem können Sie mit Autoscaling die Kosten senken, indem Sie in Zeiten geringer Auslastung nicht verwendete Ressourcen entfernen.
Die Leistungsoptimierung ist ein kontinuierlicher Prozess, keine einmalige Aktivität. Das folgende Diagramm zeigt die Phasen des Leistungsoptimierungsprozesses:
Der Prozess der Leistungsoptimierung ist ein fortlaufender Zyklus, der die folgenden Phasen umfasst:
Anforderungen definieren: Definieren Sie detaillierte Leistungsanforderungen für jede Ebene des Anwendungsstacks, bevor Sie Ihre Anwendungen entwerfen und entwickeln. Berücksichtigen Sie die wichtigsten Arbeitslastmerkmale und Leistungserwartungen, um die Ressourcenzuweisung zu planen.
Entwerfen und bereitstellen: Verwenden Sie elastische und skalierbare Designmuster, mit denen Sie die Leistungsanforderungen erfüllen können.
Überwachen und analysieren: Überwachen Sie die Leistung kontinuierlich mithilfe von Logs, Tracing, Messwerten und Benachrichtigungen.
Optimieren: Ziehen Sie potenzielle Redesigns in Betracht, wenn sich Ihre Anwendungen weiterentwickeln.
Passen Sie die Größe der Cloud-Ressourcen an und nutzen Sie neue Funktionen, um sich ändernden Leistungsanforderungen gerecht zu werden.
Wie im vorherigen Diagramm dargestellt, setzen Sie den Zyklus aus Monitoring, Neubewertung der Anforderungen und Anpassung der Cloud-Ressourcen fort.
Grundsätze und Empfehlungen zur Leistungsoptimierung, die speziell auf KI- und ML-Arbeitslasten zugeschnitten sind, finden Sie im Well-Architected Framework unter KI- und ML-Perspektive: Leistungsoptimierung.
Grundprinzipien
Die Empfehlungen im Bereich „Leistungsoptimierung“ des Well-Architected Framework sind den folgenden Grundprinzipien zugeordnet:
[[["Leicht verständlich","easyToUnderstand","thumb-up"],["Mein Problem wurde gelöst","solvedMyProblem","thumb-up"],["Sonstiges","otherUp","thumb-up"]],[["Schwer verständlich","hardToUnderstand","thumb-down"],["Informationen oder Beispielcode falsch","incorrectInformationOrSampleCode","thumb-down"],["Benötigte Informationen/Beispiele nicht gefunden","missingTheInformationSamplesINeed","thumb-down"],["Problem mit der Übersetzung","translationIssue","thumb-down"],["Sonstiges","otherDown","thumb-down"]],["Zuletzt aktualisiert: 2024-12-06 (UTC)."],[[["\u003cp\u003eThis document, part of the Google Cloud Well-Architected Framework, offers guidance on optimizing the performance of workloads in Google Cloud for architects, developers, and administrators.\u003c/p\u003e\n"],["\u003cp\u003ePerformance optimization is an ongoing process that includes defining requirements, designing and deploying, monitoring and analyzing, and optimizing resources in a continuous cycle.\u003c/p\u003e\n"],["\u003cp\u003eThe core principles of performance optimization in this framework include planning resource allocation, taking advantage of elasticity, promoting modular design, and continuously monitoring and improving performance.\u003c/p\u003e\n"],["\u003cp\u003eOptimizing performance can lead to improved operational efficiency, enhanced customer satisfaction, increased revenue, and reduced costs, with potential trade-offs between performance and cost.\u003c/p\u003e\n"],["\u003cp\u003eThere is a guide available for AI and ML specific performance optimization, in the AI and ML perspective of the Well-Architected Framework.\u003c/p\u003e\n"]]],[],null,["# Well-Architected Framework: Performance optimization pillar\n\n| To view the content in the performance optimization pillar on a single page or to to get a PDF output of the content, see [View on one page](/architecture/framework/performance-optimization/printable).\n\nThis pillar in the\n[Google Cloud Well-Architected Framework](/architecture/framework)\nprovides recommendations to optimize the performance of workloads in\nGoogle Cloud.\n\nThis document is intended for architects, developers, and administrators who\nplan, design, deploy, and manage workloads in Google Cloud.\n\nThe recommendations in this pillar can help your organization to operate\nefficiently, improve customer satisfaction, increase revenue, and reduce cost.\nFor example, when the backend processing time of an application decreases, users\nexperience faster response times, which can lead to higher user retention and\nmore revenue.\n\nThe performance optimization process can involve a trade-off between\nperformance and cost. However, optimizing performance can sometimes help you\nreduce costs. For example, when the load increases, autoscaling can help to\nprovide predictable performance by ensuring that the system resources aren't\noverloaded. Autoscaling also helps you to reduce costs by removing unused\nresources during periods of low load.\n\nPerformance optimization is a continuous process, not a one-time activity. The\nfollowing diagram shows the stages in the performance optimization process:\n\nThe performance optimization process is an ongoing cycle that includes the\nfollowing stages:\n\n1. **Define requirements**: Define granular performance requirements for each layer of the application stack before you design and develop your applications. To plan resource allocation, consider the key workload characteristics and performance expectations.\n2. **Design and deploy**: Use elastic and scalable design patterns that can help you meet your performance requirements.\n3. **Monitor and analyze**: Monitor performance continually by using logs, tracing, metrics, and alerts.\n4. **Optimize**: Consider potential redesigns as your applications evolve.\n Rightsize cloud resources and use new features to meet changing performance\n requirements.\n\n As shown in the preceding diagram, continue the cycle of monitoring,\n re-assessing requirements, and adjusting the cloud resources.\n\n\nFor performance optimization principles and recommendations that are specific to AI and ML workloads, see\n[AI and ML perspective: Performance optimization](/architecture/framework/perspectives/ai-ml/performance-optimization)\nin the Well-Architected Framework.\n\nCore principles\n---------------\n\nThe recommendations in the performance optimization pillar of the Well-Architected Framework\nare mapped to the following core principles:\n\n- [Plan resource allocation](/architecture/framework/performance-optimization/plan-resource-allocation)\n- [Take advantage of elasticity](/architecture/framework/performance-optimization/elasticity)\n- [Promote modular design](/architecture/framework/performance-optimization/promote-modular-design)\n- [Continuously monitor and improve performance](/architecture/framework/performance-optimization/continuously-monitor-and-improve-performance)\n\nContributors\n------------\n\nAuthors:\n\n- [Daniel Lees](https://www.linkedin.com/in/daniellees) \\| Cloud Security Architect\n- [Gary Harmson](https://www.linkedin.com/in/garyharmson) \\| Principal Architect\n- [Luis Urena](https://www.linkedin.com/in/urena-luis) \\| Developer Relations Engineer\n- [Zach Seils](https://www.linkedin.com/in/zachseils) \\| Networking Specialist\n\n\u003cbr /\u003e\n\nOther contributors:\n\n- [Filipe Gracio, PhD](https://www.linkedin.com/in/filipegracio) \\| Customer Engineer, AI/ML Specialist\n- [Jose Andrade](https://www.linkedin.com/in/jmandrade) \\| Customer Engineer, SRE Specialist\n- [Kumar Dhanagopal](https://www.linkedin.com/in/kumardhanagopal) \\| Cross-Product Solution Developer\n- [Marwan Al Shawi](https://www.linkedin.com/in/marwanalshawi) \\| Partner Customer Engineer\n- [Nicolas Pintaux](https://www.linkedin.com/in/nicolaspintaux) \\| Customer Engineer, Application Modernization Specialist\n- [Ryan Cox](https://www.linkedin.com/in/ryanlcox) \\| Principal Architect\n- [Radhika Kanakam](https://www.linkedin.com/in/radhika-kanakam-18ab876) \\| Program Lead, Google Cloud Well-Architected Framework\n- [Samantha He](https://www.linkedin.com/in/samantha-he-05a98173) \\| Technical Writer\n- [Wade Holmes](https://www.linkedin.com/in/wholmes) \\| Global Solutions Director\n\n\u003cbr /\u003e"]]