Elaborare i documenti con la funzione ML.PROCESS_DOCUMENT
Questo documento descrive come utilizzare la
funzione ML.PROCESS_DOCUMENT
con un
modello remoto
per estrarre informazioni utili dai documenti in una
tabella di oggetti.
Località supportate
Devi creare il modello remoto utilizzato in questa procedura nella regione US
o EU
multi-regione. Devi eseguire la funzione ML.PROCESS_DOCUMENT
nella stessa regione del modello remoto.
Autorizzazioni obbligatorie
Per creare un elaboratore Document AI, devi disporre del seguente ruolo:
roles/documentai.editor
Per creare una connessione, devi disporre del seguente ruolo:
roles/bigquery.connectionAdmin
Per creare il modello utilizzando BigQuery ML, sono necessarie le seguenti autorizzazioni:
bigquery.jobs.create
bigquery.models.create
bigquery.models.getData
bigquery.models.updateData
bigquery.models.updateMetadata
Per eseguire l'inferenza, devi disporre delle seguenti autorizzazioni:
bigquery.tables.getData
nella tabella degli oggettibigquery.models.getData
sul modellobigquery.jobs.create
Prima di iniziare
- Sign in to your Google Cloud account. If you're new to Google Cloud, create an account to evaluate how our products perform in real-world scenarios. New customers also get $300 in free credits to run, test, and deploy workloads.
-
In the Google Cloud console, on the project selector page, select or create a Google Cloud project.
-
Make sure that billing is enabled for your Google Cloud project.
-
Enable the BigQuery, BigQuery Connection API, and Document AI APIs.
-
In the Google Cloud console, on the project selector page, select or create a Google Cloud project.
-
Make sure that billing is enabled for your Google Cloud project.
-
Enable the BigQuery, BigQuery Connection API, and Document AI APIs.
Crea un processore
Crea un processore in Document AI per elaborare i documenti. Il processore deve essere di un tipo supportato.
Crea una connessione
Crea una connessione risorsa cloud e recupera l'account di servizio della connessione.
Seleziona una delle seguenti opzioni:
Console
Vai alla pagina BigQuery.
Per creare una connessione, fai clic su
Aggiungi e poi su Connessioni a origini dati esterne.Nell'elenco Tipo di connessione, seleziona Modelli remoti di Vertex AI, funzioni remote e BigLake (risorsa Cloud).
Nel campo ID connessione, inserisci un nome per la connessione.
Fai clic su Crea connessione.
Fai clic su Vai alla connessione.
Nel riquadro Informazioni sulla connessione, copia l'ID account di servizio da utilizzare in un passaggio successivo.
bq
In un ambiente a riga di comando, crea una connessione:
bq mk --connection --location=REGION --project_id=PROJECT_ID \ --connection_type=CLOUD_RESOURCE CONNECTION_ID
Il parametro
--project_id
sostituisce il progetto predefinito.Sostituisci quanto segue:
REGION
: la regione di connessionePROJECT_ID
: il tuo ID progetto Google CloudCONNECTION_ID
: un ID per la connessione
Quando crei una risorsa di connessione, BigQuery crea un account di servizio di sistema unico e lo associa alla connessione.
Risoluzione dei problemi: se ricevi il seguente errore di connessione, aggiorna Google Cloud SDK:
Flags parsing error: flag --connection_type=CLOUD_RESOURCE: value should be one of...
Recupera e copia l'ID account di servizio per utilizzarlo in un passaggio successivo:
bq show --connection PROJECT_ID.REGION.CONNECTION_ID
L'output è simile al seguente:
name properties 1234.REGION.CONNECTION_ID {"serviceAccountId": "connection-1234-9u56h9@gcp-sa-bigquery-condel.iam.gserviceaccount.com"}
Terraform
Utilizza la risorsa google_bigquery_connection
.
Per autenticarti in BigQuery, configura le credenziali predefinite dell'applicazione. Per saperne di più, consulta Configurare l'autenticazione per le librerie client.
L'esempio seguente crea una connessione risorsa Cloud denominata
my_cloud_resource_connection
nella regione US
:
Per applicare la configurazione Terraform in un progetto Google Cloud, completa i passaggi nelle seguenti sezioni.
Prepara Cloud Shell
- Avvia Cloud Shell.
-
Imposta il progetto Google Cloud predefinito in cui vuoi applicare le configurazioni Terraform.
Devi eseguire questo comando una sola volta per progetto e puoi farlo in qualsiasi directory.
export GOOGLE_CLOUD_PROJECT=PROJECT_ID
Le variabili di ambiente vengono sostituite se imposti valori espliciti nel file di configurazione Terraform.
Prepara la directory
Ogni file di configurazione di Terraform deve avere una propria directory (chiamata anche modulo principale).
-
In Cloud Shell, crea una directory e un nuovo
file al suo interno. Il nome file deve avere l'estensione
.tf
, ad esempiomain.tf
. In questo tutorial, il file è denominatomain.tf
.mkdir DIRECTORY && cd DIRECTORY && touch main.tf
-
Se stai seguendo un tutorial, puoi copiare il codice campione in ogni sezione o passaggio.
Copia il codice campione nel
main.tf
appena creato.Se vuoi, copia il codice da GitHub. Questa opzione è consigliata quando lo snippet Terraform fa parte di una soluzione end-to-end.
- Esamina e modifica i parametri di esempio da applicare al tuo ambiente.
- Salva le modifiche.
-
Inizializza Terraform. Devi eseguire questa operazione una sola volta per directory.
terraform init
Se vuoi, per utilizzare la versione più recente del provider Google, includi l'opzione
-upgrade
:terraform init -upgrade
Applica le modifiche
-
Rivedi la configurazione e verifica che le risorse che Terraform sta per creare o
aggiornare corrispondano alle tue aspettative:
terraform plan
Apporta le correzioni necessarie alla configurazione.
-
Applica la configurazione di Terraform eseguendo il seguente comando e inserendo
yes
al prompt:terraform apply
Attendi che Terraform mostri il messaggio "Applicazione completata".
- Apri il tuo progetto Google Cloud per visualizzare i risultati. Nella console Google Cloud, vai alle risorse nell'interfaccia utente per assicurarti che Terraform le abbia create o aggiornate.
Concedi l'accesso all'account di servizio
Seleziona una delle seguenti opzioni:
Console
Vai alla pagina IAM e amministrazione.
Fai clic su
Concedi l'accesso.Viene visualizzata la finestra di dialogo Aggiungi entità.
Nel campo Nuove entità, inserisci l'ID account di servizio che hai copiato in precedenza.
Nel campo Seleziona un ruolo, seleziona Document AI e poi Visualizzatore Document AI.
Fai clic su Aggiungi un altro ruolo.
Nel campo Seleziona un ruolo, seleziona Cloud Storage e poi Visualizzatore oggetti Storage.
Fai clic su Salva.
gcloud
Utilizza il
comando gcloud projects add-iam-policy-binding
:
gcloud projects add-iam-policy-binding 'PROJECT_NUMBER' --member='serviceAccount:MEMBER' --role='roles/documentai.viewer' --condition=None gcloud projects add-iam-policy-binding 'PROJECT_NUMBER' --member='serviceAccount:MEMBER' --role='roles/storage.objectViewer' --condition=None
Sostituisci quanto segue:
PROJECT_NUMBER
: il numero del progetto.MEMBER
: l'ID account di servizio che hai copiato in precedenza.
La mancata concessione dell'autorizzazione comporta un errore Permission denied
.
Crea un set di dati
Crea un set di dati contenente il modello e la tabella degli oggetti. Devi creare il set di dati, la connessione e il processore di documenti nella stessa regione.
crea un modello
Crea un modello remoto con un
REMOTE_SERVICE_TYPE
di
CLOUD_AI_DOCUMENT_V1
:
CREATE OR REPLACE MODEL `PROJECT_ID.DATASET_ID.MODEL_NAME` REMOTE WITH CONNECTION `PROJECT_ID.REGION.CONNECTION_ID` OPTIONS ( REMOTE_SERVICE_TYPE = 'CLOUD_AI_DOCUMENT_V1', DOCUMENT_PROCESSOR = 'PROCESSOR_ID' );
Sostituisci quanto segue:
PROJECT_ID
: il tuo ID progetto.DATASET_ID
: l'ID del set di dati che deve contenere il modello.MODEL_NAME
: il nome del modello.REGION
: la regione utilizzata dalla connessione.CONNECTION_ID
: l'ID connessione, ad esempiomyconnection
.Quando visualizzi i dettagli della connessione nella console Google Cloud, l'ID connessione è il valore nell'ultima sezione dell'ID connessione completo visualizzato in ID connessione, ad esempio
projects/myproject/locations/connection_location/connections/myconnection
.PROCESSOR_ID
: l'ID del processore di documenti. Per trovare questo valore, visualizza i dettagli del processore e poi controlla la riga ID nella sezione Informazioni di base.
Per visualizzare le colonne di output del modello, fai clic su Vai al modello nel risultato della query dopo aver creato il modello. Le colonne di output vengono mostrate nella sezione Etichette della scheda Schema.
Crea una tabella di oggetti
Crea una tabella di oggetti su un insieme di documenti in Cloud Storage. I documenti nella tabella degli oggetti devono essere di un tipo supportato.
Elaborare documenti
Elabora tutti i documenti con ML.PROCESS_DOCUMENT
:
SELECT * FROM ML.PROCESS_DOCUMENT( MODEL `PROJECT_ID.DATASET_ID.MODEL_NAME`, TABLE `PROJECT_ID.DATASET_ID.OBJECT_TABLE_NAME` [, PROCESS_OPTIONS => ( JSON 'PROCESS_OPTIONS')] );
Sostituisci quanto segue:
PROJECT_ID
: il tuo ID progetto.DATASET_ID
: l'ID del set di dati che contiene il modello.MODEL_NAME
: il nome del modello.OBJECT_TABLE_NAME
: il nome della tabella degli oggetti che contiene gli URI dei documenti da elaborare.PROCESS_OPTIONS
: la configurazione JSON che specifica come elaborare i documenti. Ad esempio, lo utilizzi per specificare il chunking dei documenti per l'analizzatore del layout
In alternativa, elabora alcuni documenti con ML.PROCESS_DOCUMENT
:
SELECT * FROM ML.PROCESS_DOCUMENT( MODEL `PROJECT_ID.DATASET_ID.MODEL_NAME`, (SELECT * FROM `PROJECT_ID.DATASET_ID.OBJECT_TABLE_NAME` WHERE FILTERS LIMIT NUM_DOCUMENTS ) [, PROCESS_OPTIONS => ( JSON 'PROCESS_OPTIONS')] );
Sostituisci quanto segue:
PROJECT_ID
: il tuo ID progetto.DATASET_ID
: l'ID del set di dati che contiene il modello.MODEL_NAME
: il nome del modello.OBJECT_TABLE_NAME
: il nome della tabella degli oggetti che contiene gli URI dei documenti da elaborare.FILTERS
: condizioni per filtrare i documenti che vuoi elaborare nelle colonne della tabella degli oggetti.NUM_DOCUMENTS
: il numero massimo di documenti che vuoi elaborare.PROCESS_OPTIONS
: la configurazione JSON che definisce la configurazione, ad esempio la configurazione del chunking per l'analizzatore di layout
Esempi
Esempio 1
L'esempio seguente utilizza il
parser delle spese
per elaborare i documenti rappresentati dalla tabella documents
:
SELECT * FROM ML.PROCESS_DOCUMENT( MODEL `myproject.mydataset.expense_parser`, TABLE `myproject.mydataset.documents` );
Questa query restituisce i report sulle spese analizzati, inclusi valuta,
importo totale, data di ricezione ed elementi nei report sulle spese. La colonna ml_process_document_result
contiene l'output non elaborato dell'analizzatore di spese e la colonna ml_process_document_status
contiene eventuali errori restituiti dall'elaborazione del documento.
Esempio 2
L'esempio seguente mostra come filtrare la tabella degli oggetti per scegliere quali documenti elaborare e poi scrivere i risultati in una nuova tabella:
CREATE TABLE `myproject.mydataset.expense_details` AS SELECT uri, content_type, receipt_date, purchase_time, total_amount, currency FROM ML.PROCESS_DOCUMENT( MODEL `myproject.mydataset.expense_parser`, (SELECT * FROM `myproject.mydataset.expense_reports` WHERE uri LIKE '%restaurant%'));
Passaggi successivi
- Per informazioni sull'inferenza del modello in BigQuery ML, consulta Panoramica dell'inferenza del modello.
- Per informazioni sugli statement e sulle funzioni SQL supportati per ogni tipo di modello, consulta Percorso utente end-to-end per ogni modello.