Mantenha tudo organizado com as coleções
Salve e categorize o conteúdo com base nas suas preferências.
Visão geral dos pesos do modelo do BigQuery ML
Neste documento, descrevemos como o BigQuery ML é compatível com a detecção de pesos de modelo para modelos de machine learning (ML).
Um modelo de ML é um artefato salvo após a execução de um algoritmo de ML em
dados de treinamento. O modelo representa as regras, números
e qualquer outra estrutura de dados específica de algoritmo necessária para fazer
previsões. Veja alguns exemplos:
Um modelo de regressão linear é composto por um vetor de coeficientes que têm valores específicos.
Um modelo de árvore de decisão é composto por uma ou mais árvores de instruções “if-then”
com valores específicos.
Um modelo de rede neural profunda é composto por uma estrutura de gráfico com vetores ou matrizes de pesos que têm valores específicos.
No BigQuery ML, o termo pesos de modelo é usado para descrever os componentes que compõem um modelo.
Recupera os coeficientes do modelo ARIMA, usados para modelar o componente de tendência da série temporal de entrada. Para informações sobre outros componentes, como padrões sazonais presentes na série temporal, use ML.ARIMA_EVALUATE.
O BigQuery ML não oferece suporte a funções de peso de modelo para os
tipos de modelos a seguir:
Para ver os pesos de todos esses tipos de modelo, exceto os do AutoML Tables, exporte o modelo do BigQuery ML para o Cloud Storage.
É possível usar a biblioteca XGBoost para ver a estrutura de árvore para modelos de árvore otimizada e floresta aleatória ou a biblioteca do TensorFlow para visualizar a estrutura de gráficos de DNN e modelos de amplitude e profundidade. Não há um método para receber informações de peso de modelos para modelos do AutoML Tables.
[[["Fácil de entender","easyToUnderstand","thumb-up"],["Meu problema foi resolvido","solvedMyProblem","thumb-up"],["Outro","otherUp","thumb-up"]],[["Difícil de entender","hardToUnderstand","thumb-down"],["Informações incorretas ou exemplo de código","incorrectInformationOrSampleCode","thumb-down"],["Não contém as informações/amostras de que eu preciso","missingTheInformationSamplesINeed","thumb-down"],["Problema na tradução","translationIssue","thumb-down"],["Outro","otherDown","thumb-down"]],["Última atualização 2025-08-17 UTC."],[[["\u003cp\u003eBigQuery ML uses the term "model weights" to describe the components that make up a machine learning model, such as coefficients, trees of if-then statements, or graph structures with weights.\u003c/p\u003e\n"],["\u003cp\u003eBigQuery ML provides functions like \u003ccode\u003eML.WEIGHTS\u003c/code\u003e, \u003ccode\u003eML.CENTROIDS\u003c/code\u003e, \u003ccode\u003eML.PRINCIPAL_COMPONENTS\u003c/code\u003e, \u003ccode\u003eML.PRINCIPAL_COMPONENT_INFO\u003c/code\u003e, and \u003ccode\u003eML.ARIMA_COEFFICIENTS\u003c/code\u003e to retrieve model weights for various supervised and unsupervised model types.\u003c/p\u003e\n"],["\u003cp\u003eSupported model categories include supervised models like Linear and Logistic Regression, and unsupervised models like Kmeans, Matrix Factorization, and PCA, alongside Time series models such as ARIMA_PLUS, each having their corresponding weight retrieval functions.\u003c/p\u003e\n"],["\u003cp\u003eModel weight functions are not supported for models like Boosted tree, Random forest, Deep neural network (DNN), Wide-and-deep, and AutoML Tables, however, you can export most of these model types to Cloud Storage to visualize them using XGBoost or TensorFlow, except for AutoML Tables.\u003c/p\u003e\n"]]],[],null,["# BigQuery ML model weights overview\n==================================\n\nThis document describes how BigQuery ML supports model weights\ndiscoverability for machine learning (ML) models.\n\nAn ML model is an artifact that is saved after running an ML algorithm on\ntraining data. The model represents the rules, numbers,\nand any other algorithm-specific data structures that are required to make\npredictions. Some examples include the following:\n\n- A linear regression model is comprised of a vector of coefficients that have specific values.\n- A decision tree model is comprised of one or more trees of if-then statements that have specific values.\n- A deep neural network model is comprised of a graph structure with vectors or matrices of weights that have specific values.\n\nIn BigQuery ML, the term *model weights* is used to describe the\ncomponents that a model is comprised of.\n\nFor information about the supported SQL statements and functions for each\nmodel type, see\n[End-to-end user journey for each model](/bigquery/docs/e2e-journey).\n\nModel weights offerings in BigQuery ML\n--------------------------------------\n\nBigQuery ML offers multiple functions that you can use to\nretrieve the model weights for different models.\n\nBigQuery ML doesn't support model weight functions for the\nfollowing types of models:\n\n- [Boosted tree](/bigquery/docs/reference/standard-sql/bigqueryml-syntax-create-boosted-tree)\n- [Random forest](/bigquery/docs/reference/standard-sql/bigqueryml-syntax-create-random-forest)\n- [Deep neural network (DNN)](/bigquery/docs/reference/standard-sql/bigqueryml-syntax-create-dnn-models)\n- [Wide-and-deep](/bigquery/docs/reference/standard-sql/bigqueryml-syntax-create-wnd-models)\n- [AutoML Tables](/bigquery/docs/reference/standard-sql/bigqueryml-syntax-create-automl)\n\nTo see the weights of all of these model types except for AutoML Tables\nmodels, export the model from BigQuery ML to Cloud Storage.\nYou can then use the XGBoost library to visualize the tree structure for\nboosted tree and random forest models, or the TensorFlow library\nto visualize the graph structure for DNN and wide-and-deep models. There is no\nmethod for getting model weight information for AutoML Tables models.\n\nFor more information about exporting a model, see\n[`EXPORT MODEL` statement](/bigquery/docs/reference/standard-sql/bigqueryml-syntax-export-model)\nand\n[Export a BigQuery ML model for online prediction](/bigquery/docs/export-model-tutorial)."]]