Migrar esquemas e dados do Amazon Redshift

Neste documento, descrevemos o processo de migração de dados do Amazon Redshift para o BigQuery usando endereços IP públicos.

É possível usar o serviço de transferência de dados do BigQuery para copiar seus dados de um data warehouse do Amazon Redshift para o BigQuery. Esse serviço usa agentes de migração no GKE e aciona uma operação de descarregamento do Amazon Redshift para uma área de preparo em um bucket do Amazon S3. Depois, o serviço de transferência envia seus dados do bucket do Amazon S3 para o BigQuery.

Veja no diagrama a seguir o fluxo geral dos dados entre um data warehouse do Amazon Redshift e o BigQuery durante uma migração.

Fluxo de trabalho da migração do Amazon Redshift para o BigQuery.

Se você quiser transferir dados da instância do Amazon Redshift por uma nuvem privada virtual (VPC), em endereços IP particulares, consulte Como migrar dados do Amazon Redshift com VPC.

Antes de começar

  1. Sign in to your Google Cloud account. If you're new to Google Cloud, create an account to evaluate how our products perform in real-world scenarios. New customers also get $300 in free credits to run, test, and deploy workloads.
  2. In the Google Cloud console, on the project selector page, select or create a Google Cloud project.

    Go to project selector

  3. Make sure that billing is enabled for your Google Cloud project.

  4. Enable the BigQuery and BigQuery Data Transfer Service APIs.

    Enable the APIs

  5. In the Google Cloud console, on the project selector page, select or create a Google Cloud project.

    Go to project selector

  6. Make sure that billing is enabled for your Google Cloud project.

  7. Enable the BigQuery and BigQuery Data Transfer Service APIs.

    Enable the APIs

  8. Definir as permissões necessárias

    Antes de criar uma transferência do Amazon Redshift:

    1. Verifique se o principal que cria a transferência tem as seguintes permissões no projeto onde está o job de transferência:

      • Permissões bigquery.transfers.update para criar a transferência
      • Permissões bigquery.datasets.get e bigquery.datasets.update no conjunto de dados de destino

      O papel predefinido roles/bigquery.admin do Identity and Access Management (IAM) inclui as permissões bigquery.transfers.update, bigquery.datasets.update e bigquery.datasets.get. Para mais informações sobre os papéis do IAM no serviço de transferência de dados do BigQuery, consulte o controle de acesso.

    2. Consulte a documentação do Amazon S3 para garantir que você tenha configurado as permissões necessárias para ativar a transferência. No mínimo, os dados de origem do Amazon S3 precisam ter a política AmazonS3ReadOnlyAccess (em inglês) gerenciada pela AWS aplicada a eles.

    crie um conjunto de dados

    Crie um conjunto de dados do BigQuery para armazenar os dados. Não é necessário criar tabelas.

    Conceder acesso ao cluster do Amazon Redshift

    Siga as instruções disponíveis em Configurar regras de entrada para clientes SQL para colocar os endereços IP a seguir na lista de permissões. Inclua na lista de permissões os endereços IP que correspondem à localização do seu conjunto de dados ou todos os endereços IP na tabela abaixo. Esses endereços IP de propriedade do Google são reservados para migrações de dados do Amazon Redshift.

    Locais regionais

    Descrição da região Nome da região Endereços IP
    América
    Columbus, Ohio us-east5 34.162.72.184
    34.162.173.185
    34.162.205.205
    34.162.81.45
    34.162.182.149
    34.162.59.92
    34.162.157.190
    34.162.191.145
    Dallas us-south1 34.174.172.89
    34.174.40.67
    34.174.5.11
    34.174.96.109
    34.174.148.99
    34.174.176.19
    34.174.253.135
    34.174.129.163
    Iowa us-central1 34.121.70.114
    34.71.81.17
    34.122.223.84
    34.121.145.212
    35.232.1.105
    35.202.145.227
    35.226.82.216
    35.225.241.102
    Las Vegas us-west4 34.125.53.201
    34.125.69.174
    34.125.159.85
    34.125.152.1
    34.125.195.166
    34.125.50.249
    34.125.68.55
    34.125.91.116
    Los Angeles us-west2 35.236.59.167
    34.94.132.139
    34.94.207.21
    34.94.81.187
    34.94.88.122
    35.235.101.187
    34.94.238.66
    34.94.195.77
    México northamerica-south1 34.51.6.35
    34.51.7.113
    34.51.12.83
    34.51.10.94
    34.51.11.219
    34.51.11.52
    34.51.2.114
    34.51.15.251
    Montreal northamerica-northeast1 34.95.20.253
    35.203.31.219
    34.95.22.233
    34.95.27.99
    35.203.12.23
    35.203.39.46
    35.203.116.49
    35.203.104.223
    Norte da Virgínia us-east4 35.245.95.250
    35.245.126.228
    35.236.225.172
    35.245.86.140
    35.199.31.35
    35.199.19.115
    35.230.167.48
    35.245.128.132
    35.245.111.126
    35.236.209.21
    Oregon us-west1 35.197.117.207
    35.199.178.12
    35.197.86.233
    34.82.155.140
    35.247.28.48
    35.247.31.246
    35.247.106.13
    34.105.85.54
    Salt Lake City us-west3 34.106.37.58
    34.106.85.113
    34.106.28.153
    34.106.64.121
    34.106.246.131
    34.106.56.150
    34.106.41.31
    34.106.182.92
    São Paulo southamerica-east1 35.199.88.228
    34.95.169.140
    35.198.53.30
    34.95.144.215
    35.247.250.120
    35.247.255.158
    34.95.231.121
    35.198.8.157
    Santiago southamerica-west1 34.176.188.48
    34.176.38.192
    34.176.205.134
    34.176.102.161
    34.176.197.198
    34.176.223.236
    34.176.47.188
    34.176.14.80
    Carolina do Sul us-east1 35.196.207.183
    35.237.231.98
    104.196.102.222
    35.231.13.201
    34.75.129.215
    34.75.127.9
    35.229.36.137
    35.237.91.139
    Toronto northamerica-northeast2 34.124.116.108
    34.124.116.107
    34.124.116.102
    34.124.116.80
    34.124.116.72
    34.124.116.85
    34.124.116.20
    34.124.116.68
    Europa
    Bélgica europe-west1 35.240.36.149
    35.205.171.56
    34.76.234.4
    35.205.38.234
    34.77.237.73
    35.195.107.238
    35.195.52.87
    34.76.102.189
    Berlim europe-west10 34.32.28.80
    34.32.31.206
    34.32.19.49
    34.32.33.71
    34.32.15.174
    34.32.23.7
    34.32.1.208
    34.32.8.3
    Finlândia europe-north1 35.228.35.94
    35.228.183.156
    35.228.211.18
    35.228.146.84
    35.228.103.114
    35.228.53.184
    35.228.203.85
    35.228.183.138
    Frankfurt europe-west3 35.246.153.144
    35.198.80.78
    35.246.181.106
    35.246.211.135
    34.89.165.108
    35.198.68.187
    35.242.223.6
    34.89.137.180
    Londres europe-west2 35.189.119.113
    35.189.101.107
    35.189.69.131
    35.197.205.93
    35.189.121.178
    35.189.121.41
    35.189.85.30
    35.197.195.192
    Madri europe-southwest1 34.175.99.115
    34.175.186.237
    34.175.39.130
    34.175.135.49
    34.175.1.49
    34.175.95.94
    34.175.102.118
    34.175.166.114
    Milão europe-west8 34.154.183.149
    34.154.40.104
    34.154.59.51
    34.154.86.2
    34.154.182.20
    34.154.127.144
    34.154.201.251
    34.154.0.104
    Países Baixos europe-west4 35.204.237.173
    35.204.18.163
    34.91.86.224
    34.90.184.136
    34.91.115.67
    34.90.218.6
    34.91.147.143
    34.91.253.1
    Paris europe-west9 34.163.76.229
    34.163.153.68
    34.155.181.30
    34.155.85.234
    34.155.230.192
    34.155.175.220
    34.163.68.177
    34.163.157.151
    Estocolmo europe-north2 34.51.133.48
    34.51.136.177
    34.51.128.140
    34.51.141.252
    34.51.139.127
    34.51.142.55
    34.51.134.218
    34.51.138.9
    Turim europe-west12 34.17.15.186
    34.17.44.123
    34.17.41.160
    34.17.47.82
    34.17.43.109
    34.17.38.236
    34.17.34.223
    34.17.16.47
    Varsóvia europe-central2 34.118.72.8
    34.118.45.245
    34.118.69.169
    34.116.244.189
    34.116.170.150
    34.118.97.148
    34.116.148.164
    34.116.168.127
    Zurique europe-west6 34.65.205.160
    34.65.121.140
    34.65.196.143
    34.65.9.133
    34.65.156.193
    34.65.216.124
    34.65.233.83
    34.65.168.250
    Ásia-Pacífico
    Délhi asia-south2 34.126.212.96
    34.126.212.85
    34.126.208.224
    34.126.212.94
    34.126.208.226
    34.126.212.232
    34.126.212.93
    34.126.212.206
    Hong Kong asia-east2 34.92.245.180
    35.241.116.105
    35.220.240.216
    35.220.188.244
    34.92.196.78
    34.92.165.209
    35.220.193.228
    34.96.153.178
    Jacarta asia-southeast2 34.101.79.105
    34.101.129.32
    34.101.244.197
    34.101.100.180
    34.101.109.205
    34.101.185.189
    34.101.179.27
    34.101.197.251
    Melbourne australia-southeast2 34.126.196.95
    34.126.196.106
    34.126.196.126
    34.126.196.96
    34.126.196.112
    34.126.196.99
    34.126.196.76
    34.126.196.68
    Mumbai asia-south1 34.93.67.112
    35.244.0.1
    35.200.245.13
    35.200.203.161
    34.93.209.130
    34.93.120.224
    35.244.10.12
    35.200.186.100
    Osaka asia-northeast2 34.97.94.51
    34.97.118.176
    34.97.63.76
    34.97.159.156
    34.97.113.218
    34.97.4.108
    34.97.119.140
    34.97.30.191
    Seul asia-northeast3 34.64.152.215
    34.64.140.241
    34.64.133.199
    34.64.174.192
    34.64.145.219
    34.64.136.56
    34.64.247.158
    34.64.135.220
    Singapura asia-southeast1 34.87.12.235
    34.87.63.5
    34.87.91.51
    35.198.197.191
    35.240.253.175
    35.247.165.193
    35.247.181.82
    35.247.189.103
    Sydney australia-southeast1 35.189.33.150
    35.189.38.5
    35.189.29.88
    35.189.22.179
    35.189.20.163
    35.189.29.83
    35.189.31.141
    35.189.14.219
    Taiwan asia-east1 35.221.201.20
    35.194.177.253
    34.80.17.79
    34.80.178.20
    34.80.174.198
    35.201.132.11
    35.201.223.177
    35.229.251.28
    35.185.155.147
    35.194.232.172
    Tóquio asia-northeast1 34.85.11.246
    34.85.30.58
    34.85.8.125
    34.85.38.59
    34.85.31.67
    34.85.36.143
    34.85.32.222
    34.85.18.128
    34.85.23.202
    34.85.35.192
    Oriente Médio
    Damã me-central2 34.166.20.177
    34.166.10.104
    34.166.21.128
    34.166.19.184
    34.166.20.83
    34.166.18.138
    34.166.18.48
    34.166.23.171
    Doha me-central1 34.18.48.121
    34.18.25.208
    34.18.38.183
    34.18.33.25
    34.18.21.203
    34.18.21.80
    34.18.36.126
    34.18.23.252
    Tel Aviv me-west1 34.165.184.115
    34.165.110.74
    34.165.174.16
    34.165.28.235
    34.165.170.172
    34.165.187.98
    34.165.85.64
    34.165.245.97
    África
    Johannesburgo africa-south1 34.35.11.24
    34.35.10.66
    34.35.8.32
    34.35.3.248
    34.35.2.113
    34.35.5.61
    34.35.7.53
    34.35.3.17

    Locais multirregionais

    Descrição multirregional Nome multirregional Endereços IP
    Data centers dentro de estados membro da União Europeia1 EU 34.76.156.158
    34.76.156.172
    34.76.136.146
    34.76.1.29
    34.76.156.232
    34.76.156.81
    34.76.156.246
    34.76.102.206
    34.76.129.246
    34.76.121.168
    Data centers nos Estados Unidos US 35.185.196.212
    35.197.102.120
    35.185.224.10
    35.185.228.170
    35.197.5.235
    35.185.206.139
    35.197.67.234
    35.197.38.65
    35.185.202.229
    35.185.200.120

    1 Os dados localizados na multirregião EU não são armazenados nos data centers europe-west2 (Londres) ou europe-west6 (Zurique).

    Conceder acesso ao bucket do Amazon S3

    É necessário ter um bucket do Amazon S3 para usar como área de teste para transferir os dados do Amazon Redshift para o BigQuery. Para instruções detalhadas, consulte a documentação da Amazon.

    1. Recomendamos que você crie um usuário do IAM dedicado à Amazon e conceda a ele acesso somente leitura ao Amazon Redshift e acesso para leitura e gravação ao Amazon S3. Para concluir essa etapa, aplique as políticas a seguir:

      Permissões de migração do Amazon Redshift

    2. Crie um par de chaves de acesso do usuário do IAM para o Amazon.

    Configurar controle de carga de trabalho com uma fila de migração separada

    Opcionalmente, é possível definir uma fila do Amazon Redshift para a migração de forma a limitar e separar os recursos usados no processo. É possível configurar essa fila de migração com uma contagem máxima de consultas de simultaneidade. Em seguida, é possível associar um determinado grupo de usuários de migração à fila e usar essas credenciais ao configurar o processo de transferência de dados para o BigQuery. O serviço de transferência tem acesso apenas à fila de migração.

    Coletar informações de transferência

    Reúna as informações necessárias para configurar a migração com o serviço de transferência de dados do BigQuery:

    • Siga estas instruções para encontrar o URL de JDBC.
    • Encontre o nome e a senha de um usuário com as permissões adequadas para seu banco de dados do Amazon Redshift.
    • Siga as instruções em Conceder acesso ao bucket do Amazon S3 para receber um par de chaves de acesso da AWS.
    • Encontre o URI do bucket do Amazon S3 que você quer usar para a transferência. Recomendamos que você configure uma política de Ciclo de vida para esse bucket, evitando cobranças desnecessárias. O prazo de validade recomendado é de 24 horas, para que haja tempo suficiente para transferir todos os dados para o BigQuery.

    Avaliar os dados

    Como parte da transferência de dados, o serviço de transferência de dados do BigQuery grava dados do Amazon Redshift no Cloud Storage como arquivos CSV. Se esses arquivos contiverem o caractere ASCII 0, não poderão ser carregados no BigQuery. Sugerimos que você avalie seus dados para determinar se isso pode ser um problema para você. Se for o caso, é possível contornar isso exportando os dados para o Amazon S3 como arquivos Parquet e, em seguida, importando esses arquivos usando o serviço de transferência de dados do BigQuery. Para mais informações, consulte Visão geral das transferências do Amazon S3.

    Configurar uma transferência do Amazon Redshift

    Selecione uma das seguintes opções:

    Console

    1. No console Google Cloud , acesse a página BigQuery.

      Vá para BigQuery

    2. Clique em Transferências de dados.

    3. Clique em Criar transferência.

    4. Na seção Tipo de origem, selecione Migração: Amazon Redshift na lista Origem.

    5. Na seção Nome da configuração de transferência, insira um nome para a transferência, como My migration, no campo Nome de exibição. Esse nome pode ter qualquer valor que identifique facilmente a transferência, caso seja necessário modificá-la no futuro.

    6. Na seção Configurações de destino, escolha o conjunto de dados criado, na lista Conjunto de dados.

    7. Na seção Detalhes da fonte de dados, faça o seguinte:

      1. Em URL de conexão de JDBC para Amazon Redshift, forneça o URL de JDBC para acessar o cluster do Amazon Redshift.
      2. Em Nome de usuário do seu banco de dados, digite o nome de usuário do banco de dados do Amazon Redshift que você quer migrar.
      3. Em Senha do seu banco de dados, insira a respectiva senha.

      4. Em ID da chave de acesso e Chave de acesso do secret, insira o par de chaves de acesso obtido em Conceder acesso ao bucket do S3.

      5. Em URI do Amazon S3, insira o URI do bucket do S3 que será utilizada como área de preparo.

      6. Em Esquema do Amazon Redshift, insira o esquema que você está migrando.

      7. Em Padrões de nome da tabela, especifique um nome ou padrão que corresponda aos nomes das tabelas no esquema. Use expressões regulares para especificar o padrão no formato: <table1Regex>;<table2Regex>. Esse padrão precisa seguir a sintaxe de expressão típica de Java. Por exemplo:

        • lineitem;ordertb corresponde às tabelas chamadas lineitem e ordertb.
        • .* corresponde a todas as tabelas.

        Deixe esse campo vazio para migrar todas as tabelas do esquema especificado.

      8. Em VPC e intervalo de IP reservado, deixe o campo em branco.

    8. No menu Conta de serviço, selecione uma conta de serviço entre aquelas associadas ao Google Cloud projeto. É possível associar uma conta de serviço à transferência em vez de usar suas credenciais de usuário. Para saber mais sobre o uso de contas de serviço com transferências de dados, consulte Usar contas de serviço.

    9. Opcional: na seção Opções de notificação, faça o seguinte:

      1. Clique no botão para ativar as notificações por e-mail. Quando você ativa essa opção, o administrador de transferência recebe uma notificação por e-mail se uma execução de transferência falhar.
      2. Em Selecionar um tópico do Pub/Sub, escolha o nome do tópico ou clique em Criar um tópico. Essa opção configura notificações de execução do Pub/Sub da sua transferência.
    10. Clique em Salvar.

    11. O console do Google Cloud mostra todos os detalhes da configuração da transferência, incluindo um Nome de recurso para ela.

    bq

    Digite o comando bq mk e forneça a sinalização de criação da transferência --transfer_config. As sinalizações a seguir também são obrigatórias:

    • --project_id
    • --data_source
    • --target_dataset
    • --display_name
    • --params
    bq mk \
        --transfer_config \
        --project_id=project_id \
        --data_source=data_source \
        --target_dataset=dataset \
        --display_name=name \
        --service_account_name=service_account \
        --params='parameters'

    Em que:

    • project_id é o ID do projeto Google Cloud . Se --project_id não for especificado, o projeto padrão será usado.
    • data_source é a fonte de dados: redshift.
    • dataset é o conjunto de dados de destino do BigQuery para a configuração da transferência.
    • name é o nome de exibição da configuração de transferência. O nome da transferência pode ser qualquer valor que permita identificá-la facilmente, caso precise modificá-la mais tarde.
    • service_account: é o nome da conta de serviço usado para autenticar a transferência. A conta de serviço precisa pertencer ao mesmo project_id usado para criar a transferência e ter todas as permissões necessárias.
    • parameters contém os parâmetros da configuração da transferência criada no formato JSON. Por exemplo, --params='{"param":"param_value"}'.

    Os parâmetros necessários em uma configuração de transferência do Amazon Redshift são:

    • jdbc_url: o URL de conexão do JDBC é usado para localizar o cluster do Amazon Redshift;
    • database_username: o nome de usuário para acessar o banco de dados e descarregar tabelas especificadas;
    • database_password: a senha usada com o nome de usuário para acessar seu banco de dados e descarregar tabelas especificadas;
    • access_key_id: o ID da chave de acesso para assinar as solicitações feitas para a AWS;
    • secret_access_key: a chave de acesso secreta usada com o ID da chave de acesso para assinar as solicitações feitas para a AWS;
    • s3_bucket: o URI do Amazon S3 que começa com "s3://" e especifica um prefixo de arquivos temporários a serem usados;
    • redshift_schema: o esquema do Amazon Redshift que contém todas as tabelas a serem migradas;
    • table_name_patterns: os padrões de nome de tabela separados por um ponto e vírgula (;), que são expressões regulares correspondentes às tabelas a serem migradas. Se não for fornecido, todas as tabelas no esquema do banco de dados serão migradas.

    Por exemplo, com o comando a seguir, você cria uma transferência do Amazon Redshift chamada My Transfer, com um conjunto de dados de destino mydataset e um projeto com o ID google.com:myproject.

    bq mk \
        --transfer_config \
        --project_id=myproject \
        --data_source=redshift \
        --target_dataset=mydataset \
        --display_name='My Transfer' \
        --params='{"jdbc_url":"jdbc:postgresql://test-example-instance.sample.us-west-1.redshift.amazonaws.com:5439/dbname","database_username":"my_username","database_password":"1234567890","access_key_id":"A1B2C3D4E5F6G7H8I9J0","secret_access_key":"1234567890123456789012345678901234567890","s3_bucket":"s3://bucket/prefix","redshift_schema":"public","table_name_patterns":"table_name"}'
    

    API

    Use o método projects.locations.transferConfigs.create e forneça uma instância do recurso TransferConfig.

    Java

    Antes de testar esta amostra, siga as instruções de configuração do Java no Guia de início rápido do BigQuery: como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API BigQuery em Java.

    Para autenticar no BigQuery, configure o Application Default Credentials. Para mais informações, acesse Configurar a autenticação para bibliotecas de cliente.

    import com.google.api.gax.rpc.ApiException;
    import com.google.cloud.bigquery.datatransfer.v1.CreateTransferConfigRequest;
    import com.google.cloud.bigquery.datatransfer.v1.DataTransferServiceClient;
    import com.google.cloud.bigquery.datatransfer.v1.ProjectName;
    import com.google.cloud.bigquery.datatransfer.v1.TransferConfig;
    import com.google.protobuf.Struct;
    import com.google.protobuf.Value;
    import java.io.IOException;
    import java.util.HashMap;
    import java.util.Map;
    
    // Sample to create redshift transfer config
    public class CreateRedshiftTransfer {
    
      public static void main(String[] args) throws IOException {
        // TODO(developer): Replace these variables before running the sample.
        final String projectId = "MY_PROJECT_ID";
        String datasetId = "MY_DATASET_ID";
        String datasetRegion = "US";
        String jdbcUrl = "MY_JDBC_URL_CONNECTION_REDSHIFT";
        String dbUserName = "MY_USERNAME";
        String dbPassword = "MY_PASSWORD";
        String accessKeyId = "MY_AWS_ACCESS_KEY_ID";
        String secretAccessId = "MY_AWS_SECRET_ACCESS_ID";
        String s3Bucket = "MY_S3_BUCKET_URI";
        String redShiftSchema = "MY_REDSHIFT_SCHEMA";
        String tableNamePatterns = "*";
        String vpcAndReserveIpRange = "MY_VPC_AND_IP_RANGE";
        Map<String, Value> params = new HashMap<>();
        params.put("jdbc_url", Value.newBuilder().setStringValue(jdbcUrl).build());
        params.put("database_username", Value.newBuilder().setStringValue(dbUserName).build());
        params.put("database_password", Value.newBuilder().setStringValue(dbPassword).build());
        params.put("access_key_id", Value.newBuilder().setStringValue(accessKeyId).build());
        params.put("secret_access_key", Value.newBuilder().setStringValue(secretAccessId).build());
        params.put("s3_bucket", Value.newBuilder().setStringValue(s3Bucket).build());
        params.put("redshift_schema", Value.newBuilder().setStringValue(redShiftSchema).build());
        params.put("table_name_patterns", Value.newBuilder().setStringValue(tableNamePatterns).build());
        params.put(
            "migration_infra_cidr", Value.newBuilder().setStringValue(vpcAndReserveIpRange).build());
        TransferConfig transferConfig =
            TransferConfig.newBuilder()
                .setDestinationDatasetId(datasetId)
                .setDatasetRegion(datasetRegion)
                .setDisplayName("Your Redshift Config Name")
                .setDataSourceId("redshift")
                .setParams(Struct.newBuilder().putAllFields(params).build())
                .setSchedule("every 24 hours")
                .build();
        createRedshiftTransfer(projectId, transferConfig);
      }
    
      public static void createRedshiftTransfer(String projectId, TransferConfig transferConfig)
          throws IOException {
        try (DataTransferServiceClient client = DataTransferServiceClient.create()) {
          ProjectName parent = ProjectName.of(projectId);
          CreateTransferConfigRequest request =
              CreateTransferConfigRequest.newBuilder()
                  .setParent(parent.toString())
                  .setTransferConfig(transferConfig)
                  .build();
          TransferConfig config = client.createTransferConfig(request);
          System.out.println("Cloud redshift transfer created successfully :" + config.getName());
        } catch (ApiException ex) {
          System.out.print("Cloud redshift transfer was not created." + ex.toString());
        }
      }
    }

    Cotas e limites

    O BigQuery tem uma cota de carregamento de 15 TB para cada job de carregamento de cada tabela. Internamente, o Amazon Redshift compacta os dados da tabela. Portanto, o tamanho da tabela exportada será maior do que o informado pelo Amazon Redshift. Se estiver planejando migrar uma tabela com mais de 15 TB, entre em contato com o Cloud Customer Care primeiro.

    Usar esse serviço pode gerar custos não previstos pelo Google. Consulte as páginas de preços do Amazon Redshift e do Amazon S3 para mais detalhes.

    Devido ao modelo de consistência do Amazon S3, é possível que alguns arquivos não sejam incluídos na transferência para o BigQuery.

    A seguir