[[["易于理解","easyToUnderstand","thumb-up"],["解决了我的问题","solvedMyProblem","thumb-up"],["其他","otherUp","thumb-up"]],[["很难理解","hardToUnderstand","thumb-down"],["信息或示例代码不正确","incorrectInformationOrSampleCode","thumb-down"],["没有我需要的信息/示例","missingTheInformationSamplesINeed","thumb-down"],["翻译问题","translationIssue","thumb-down"],["其他","otherDown","thumb-down"]],["最后更新时间 (UTC):2025-07-31。"],[[["\u003cp\u003eForecasting involves analyzing historical data to predict future trends, such as using past sales data to forecast future sales at store locations.\u003c/p\u003e\n"],["\u003cp\u003eIn BigQuery ML, forecasting is performed on time series data, which are data points collected over time.\u003c/p\u003e\n"],["\u003cp\u003eThe \u003ccode\u003eML.FORECAST\u003c/code\u003e function, along with the \u003ccode\u003eARIMA_PLUS\u003c/code\u003e and \u003ccode\u003eARIMA_PLUS_XREG\u003c/code\u003e models, are used to forecast future values for single or multiple variables, respectively.\u003c/p\u003e\n"],["\u003cp\u003eTime series modeling in BigQuery ML is a pipeline consisting of multiple models and algorithms.\u003c/p\u003e\n"],["\u003cp\u003eWhile deep ML knowledge is not mandatory, having a foundational understanding can help optimize your data and model to improve results.\u003c/p\u003e\n"]]],[],null,[]]