Use BigQuery metastore with Dataproc
This document explains how to use BigQuery metastore with Dataproc on Compute Engine. This connection provides you with a single, shared metastore that works across open source software engines, such as Apache Spark or Apache Flink.
Before you begin
- Enable billing for your Google Cloud project. Learn how to check if billing is enabled on a project.
Enable the BigQuery, and Dataproc APIs.
Optional: Understand how BigQuery metastore works and why you should use it.
Required roles
To get the permissions that you need to use Spark or Flink and Dataproc with BigQuery metastore as a metadata store, ask your administrator to grant you the following IAM roles:
-
Create a Dataproc cluster:
Dataproc Worker (
roles/dataproc.worker
) on the Compute Engine default service account in the project -
Create BigQuery metastore tables in Spark or Flink:
-
Dataproc Worker (
roles/dataproc.worker
) on the Dataproc VM service account in the project -
BigQuery Data Editor (
roles/bigquery.dataEditor
) on the Dataproc VM service account in the project -
Storage Object Admin (
roles/storage.objectAdmin
) on the Dataproc VM service account in the project
-
Dataproc Worker (
-
Query BigQuery metastore tables in BigQuery:
-
BigQuery Data Viewer (
roles/bigquery.dataViewer
) on the project -
BigQuery User (
roles/bigquery.user
) on the project -
Storage Object Viewer (
roles/storage.objectViewer
) on the project
-
BigQuery Data Viewer (
For more information about granting roles, see Manage access to projects, folders, and organizations.
You might also be able to get the required permissions through custom roles or other predefined roles.
General workflow
To use Dataproc on Compute Engine with BigQuery metastore, you follow these general steps:
- Create a Dataproc cluster or configure an existing cluster.
- Connect to your preferred open source software engine, such as Spark or Flink.
- Use a JAR file to install the Apache Iceberg catalog plugin on the cluster.
- Create and manage your BigQuery metastore resources as needed, depending on the open source software engine that you're using.
- In BigQuery, access and use your BigQuery metastore resources.
Connect BigQuery metastore to Spark
The following instructions show you how to connect Dataproc to BigQuery metastore using interactive Spark SQL.
Download the Iceberg catalog plugin
To connect BigQuery metastore with Dataproc and Spark, you must use the BigQuery metastore Iceberg catalog plugin jar file.
This file is included by default in Dataproc image version 2.2. If your Dataproc clusters don't have direct access to the internet, you must download the plugin and upload it to a Cloud Storage bucket that your Dataproc cluster can access.
Download the BigQuery metastore Apache Iceberg catalog plugin.
Configure a Dataproc cluster
Before you connect to BigQuery metastore, you must set up a Dataproc cluster.
To do this, you can create a new cluster or use an existing cluster. After, you use this cluster to run interactive Spark SQL and manage your BigQuery metastore resources.
The subnet in the region where the cluster is created must have Private Google Access (PGA) enabled. By default, Dataproc cluster VMs, created with a 2.2 (default) or later image version, have internal IP addresses only. To allow cluster VMs to communicate with Google APIs, enable Private Google Access on the
default
(or user-specified network name, if applicable) network subnet in the region where the cluster is created.If you want to run the Zeppelin web interface example in this guide, you must use or create a Dataproc cluster with the Zeppelin optional component enabled.
New cluster
To create a new Dataproc cluster, run the following gcloud
dataproc clusters create
command. This configuration contains the
settings that you need to use BigQuery metastore.
gcloud dataproc clusters create CLUSTER_NAME \ --project=PROJECT_ID \ --region=LOCATION \ --optional-components=ZEPPELIN \ --enable-component-gateway \ --single-node
Replace the following:
CLUSTER_NAME
: a name for your Dataproc cluster.PROJECT_ID
: the ID of the Google Cloud project where you're creating the cluster.LOCATION
: the Google Cloud region where you're creating the cluster.
Existing cluster
To configure an existing cluster, add the following Iceberg Spark runtime to your cluster.
org.apache.iceberg:iceberg-spark-runtime-3.5_2.12:1.6.1
You can add the runtime using one of the following options:
Initialization Script. Add the runtime dependency to a custom initialization script that runs when the is created.
After you add the runtime dependency to the script, follow the instructions to create a recreate and update a cluster.
Manual Installation. Manually add the Iceberg catalog plugin JAR file and configure the Spark properties to include the runtime on your cluster.
Submit a Spark job
To submit a Spark job, use one of the following methods:
gcloud CLI
gcloud dataproc jobs submit spark-sql \ --project=PROJECT_ID \ --cluster=CLUSTER_NAME \ --region==REGION \ --jars=https://storage-download.googleapis.com/maven-central/maven2/org/apache/iceberg/iceberg-spark-runtime-3.5_2.12/1.6.1/iceberg-spark-runtime-3.5_2.12-1.6.1.jar,gs://spark-lib/bigquery/iceberg-bigquery-catalog-1.6.1-1.0.1-beta.jar \ --properties=spark.sql.catalog.CATALOG_NAME=org.apache.iceberg.spark.SparkCatalog, \ spark.sql.catalog.CATALOG_NAME.catalog-impl=org.apache.iceberg.gcp.bigquery.BigQueryMetastoreCatalog, \ spark.sql.catalog.CATALOG_NAME.gcp_project=PROJECT_ID, \ spark.sql.catalog.CATALOG_NAME.gcp_location=LOCATION, \ spark.sql.catalog.CATALOG_NAME.warehouse=WAREHOUSE_DIRECTORY \ --execute="SPARK_SQL_COMMAND"
Replace the following:
PROJECT_ID
: the ID of the Google Cloud project that contains the Dataproc cluster.CLUSTER_NAME
: the name of the Dataproc cluster that you're using to run the Spark SQL job.REGION
: the Compute Engine region where your cluster is located.LOCATION
: the location of the BigQuery resources.CATALOG_NAME
: the name of the Spark catalog to that you're using with your SQL job.WAREHOUSE_DIRECTORY
: the Cloud Storage folder that contains your data warehouse. This value starts withgs://
.SPARK_SQL_COMMAND
: the Spark SQL query that you want to run. This query includes the commands to create your resources. For example, to create a namespace and table.
Interactive Spark
Connect to Spark and install the catalog plugin
To install the catalog plugin for BigQuery metastore, connect to your Dataproc cluster using SSH.
- In the Google Cloud console, go to the VM Instances page.
To connect to a Dataproc VM instance, click SSH in the list of virtual machine instances. The output is similar to the following:
Connected, host fingerprint: ssh-rsa ... Linux cluster-1-m 3.16.0-0.bpo.4-amd64 ... ... example-cluster@cluster-1-m:~$
In the terminal, run the following BigQuery metastore initialization command:
spark-sql \ --jars https://storage-download.googleapis.com/maven-central/maven2/org/apache/iceberg/iceberg-spark-runtime-3.5_2.12/1.6.1/iceberg-spark-runtime-3.5_2.12-1.6.1.jar,gs://spark-lib/bigquery/iceberg-bigquery-catalog-1.6.1-1.0.1-beta.jar \ --conf spark.sql.catalog.CATALOG_NAME=org.apache.iceberg.spark.SparkCatalog \ --conf spark.sql.catalog.CATALOG_NAME.catalog-impl=org.apache.iceberg.gcp.bigquery.BigQueryMetastoreCatalog \ --conf spark.sql.catalog.CATALOG_NAME.gcp_project=PROJECT_ID \ --conf spark.sql.catalog.CATALOG_NAME.gcp_location=LOCATION \ --conf spark.sql.catalog.CATALOG_NAME.warehouse=WAREHOUSE_DIRECTORY
Replace the following:
CATALOG_NAME
: the name of the Spark catalog to that you're using with your SQL job.PROJECT_ID
: the Google Cloud project ID of the BigQuery metastore catalog that your Spark catalog links with.LOCATION
: the Google Cloud location of the BigQuery metastore.WAREHOUSE_DIRECTORY
: the Cloud Storage folder that contains your data warehouse. This value starts withgs://
.
After you successfully connect to a cluster, your Spark terminal displays the
spark-sql
prompt.spark-sql (default)>
Manage BigQuery metastore resources
You are now connected to the BigQuery metastore. You can view your existing resources or create new resources based on your metadata stored in BigQuery metastore.
For example, try running the following commands in the interactive Spark SQL session to create an Iceberg namespace and table.
Use the custom Iceberg catalog:
USE `CATALOG_NAME`;
Create a namespace:
CREATE NAMESPACE IF NOT EXISTS NAMESPACE_NAME;
Use the created namespace:
USE NAMESPACE_NAME;
Create an Iceberg table:
CREATE TABLE TABLE_NAME (id int, data string) USING ICEBERG;
Insert a table row:
INSERT INTO TABLE_NAME VALUES (1, "first row");
Add a table column:
ALTER TABLE TABLE_NAME ADD COLUMNS (newDoubleCol double);
View table metadata:
DESCRIBE EXTENDED TABLE_NAME;
List tables in the namespace:
SHOW TABLES;
Zeppelin notebook
In the Google Cloud console, go to the Dataproc Clusters page.
Click the name of cluster that you want to use.
The Cluster Details page opens.
In the navigation menu, click Web interfaces.
Under Component gateway, click Zeppelin. The Zeppelin notebook page opens.
In the navigation menu, click Notebook and then click +Create new note.
In the dialog, enter a notebook name. Leave Spark selected as the default interpreter.
Click Create. A new notebook is created.
In the notebook, click the settings menu and then click Interpreter.
In the Search interpreters field, search for Spark.
Click Edit.
In the Spark.jars field, enter the URI of the Spark jar.
https://storage-download.googleapis.com/maven-central/maven2/org/apache/iceberg/iceberg-spark-runtime-3.5_2.12/1.6.1/iceberg-spark-runtime-3.5_2.12-1.6.1.jar,gs://spark-lib/bigquery/iceberg-bigquery-catalog-1.6.1-1.0.1-beta.jar
Click Save.
Click OK.
Copy the following PySpark code into your Zeppelin notebook.
%pyspark from pyspark.sql import SparkSession spark = SparkSession.builder \ .appName("BigQuery Metastore Iceberg") \ .config("spark.sql.catalog.CATALOG_NAME", "org.apache.iceberg.spark.SparkCatalog") \ .config("spark.sql.catalog.CATALOG_NAME.catalog-impl", "org.apache.iceberg.gcp.bigquery.BigQueryMetastoreCatalog") \ .config("spark.sql.catalog.CATALOG_NAME.gcp_project", "PROJECT_ID") \ .config("spark.sql.catalog.CATALOG_NAME.gcp_location", "LOCATION") \ .config("spark.sql.catalog.CATALOG_NAME.warehouse", "WAREHOUSE_DIRECTORY") \ .getOrCreate() spark.sql("select version()").show() spark.sql("USE `CATALOG_NAME`;") spark.sql("CREATE NAMESPACE IF NOT EXISTS NAMESPACE_NAME;") spark.sql("USE NAMESPACE_NAME;") spark.sql("CREATE TABLE TABLE_NAME (id int, data string) USING ICEBERG;") spark.sql("DESCRIBE TABLE_NAME;").show()
Replace the following:
CATALOG_NAME
: the name of the Spark catalog to use for the SQL job.PROJECT_ID
: the ID of the Google Cloud project that contains the Dataproc cluster.WAREHOUSE_DIRECTORY
: the Cloud Storage folder that contains your data warehouse. This value starts withgs://
.NAMESPACE_NAME
: the namespace name that references your Spark table.WAREHOUSE_DIRECTORY
: the URI of the Cloud Storage folder where your data warehouse is stored.TABLE_NAME
: a table name for your Spark table.
Click the run icon or press
Shift-Enter
to run the code. When the job completes, the status message shows "Spark Job Finished", and the output displays the table contents:
Connect BigQuery metastore to Flink
The following instructions show you how to connect Dataproc to BigQuery metastore using the Flink SQL client.
Install the catalog plugin and connect to a Flink session
To connect BigQuery metastore to Flink, do the following:
- Create a Dataproc cluster with the optional Flink component enabled, and ensure that you're using Dataproc 2.2 or later.
In the Google Cloud console, go to the VM instances page.
In the list of virtual machine instances, click SSH to connect to a Dataproc VM instance.
Configure the Iceberg custom catalog plugin for BigQuery metastore:
FLINK_VERSION=1.17 ICEBERG_VERSION=1.5.2 cd /usr/lib/flink sudo wget -c https://repo.maven.apache.org/maven2/org/apache/iceberg/iceberg-flink-runtime-${FLINK_VERSION}/${ICEBERG_VERSION}/iceberg-flink-runtime-${FLINK_VERSION}-${ICEBERG_VERSION}.jar -P lib sudo gcloud storage cp gs://spark-lib/bigquery/iceberg-bigquery-catalog-${ICEBERG_VERSION}-1.0.1-beta.jar lib/
Start the Flink session on YARN:
HADOOP_CLASSPATH=`hadoop classpath` sudo bin/yarn-session.sh -nm flink-dataproc -d sudo bin/sql-client.sh embedded \ -s yarn-session
Create a catalog in Flink:
CREATE CATALOG CATALOG_NAME WITH ( 'type'='iceberg', 'warehouse'='WAREHOUSE_DIRECTORY', 'catalog-impl'='org.apache.iceberg.gcp.bigquery.BigQueryMetastoreCatalog', 'gcp_project'='PROJECT_ID', 'gcp_location'='LOCATION' );
Replace the following:
CATALOG_NAME
: the Flink catalog identifier, which is linked to a BigQuery metastore catalog.WAREHOUSE_DIRECTORY
: the base path for the warehouse directory (the Cloud Storage folder where Flink creates files). This value starts withgs://
.PROJECT_ID
: the project ID of the BigQuery metastore catalog that the Flink catalog links with.LOCATION
: the location of the BigQuery resources.
Your Flink session is now connected to BigQuery metastore, and you can run Flink SQL commands.
Manage BigQuery metastore resources
Now that you're connected to BigQuery metastore, you can create and view resources based on the metadata stored in BigQuery metastore.
For example, try running the following commands in your interactive Flink SQL session to create an Iceberg database and table.
Use the custom Iceberg catalog:
USE CATALOG CATALOG_NAME;
Replace
CATALOG_NAME
with your Flink catalog identifier.Create a database, which creates a dataset in BigQuery:
CREATE DATABASE IF NOT EXISTS DATABASE_NAME;
Replace
DATABASE_NAME
with the name of your new database.Use the database that you created:
USE DATABASE_NAME;
Create an Iceberg table. The following creates an example sales table:
CREATE TABLE IF NOT EXISTS ICEBERG_TABLE_NAME ( order_number BIGINT, price DECIMAL(32,2), buyer ROW<first_name STRING, last_name STRING>, order_time TIMESTAMP(3) );
Replace
ICEBERG_TABLE_NAME
with a name for your new table.View table metadata:
DESCRIBE EXTENDED ICEBERG_TABLE_NAME;
List tables in the database:
SHOW TABLES;
Ingest data into your table
After you create an Iceberg table in the previous section, you can use Flink DataGen as a data source to ingest real-time data into your table. The following steps are an example of this workflow:
Create a temporary table using DataGen:
CREATE TEMPORARY TABLE DATABASE_NAME.TEMP_TABLE_NAME WITH ( 'connector' = 'datagen', 'rows-per-second' = '10', 'fields.order_number.kind' = 'sequence', 'fields.order_number.start' = '1', 'fields.order_number.end' = '1000000', 'fields.price.min' = '0', 'fields.price.max' = '10000', 'fields.buyer.first_name.length' = '10', 'fields.buyer.last_name.length' = '10' ) LIKE DATABASE_NAME.ICEBERG_TABLE_NAME (EXCLUDING ALL);
Replace the following:
DATABASE_NAME
: the name of the database to store your temporary table.TEMP_TABLE_NAME
: a name for your temporary table.ICEBERG_TABLE_NAME
: the name of the Iceberg table that you created in the previous section.
Set the parallelism to 1:
SET 'parallelism.default' = '1';
Set the checkpoint interval:
SET 'execution.checkpointing.interval' = '10second';
Set the checkpoint:
SET 'state.checkpoints.dir' = 'hdfs:///flink/checkpoints';
Start the real-time streaming job:
INSERT INTO ICEBERG_TABLE_NAME SELECT * FROM TEMP_TABLE_NAME;
The output is similar to the following:
[INFO] Submitting SQL update statement to the cluster... [INFO] SQL update statement has been successfully submitted to the cluster: Job ID: 0de23327237ad8a811d37748acd9c10b
To check the status of the streaming job, do the following:
In the Google Cloud console, go to the Clusters page.
Select your cluster.
Click the Web interfaces tab.
Click the YARN ResourceManager link.
In the YARN ResourceManager interface, find your Flink session, and click the ApplicationMaster link under Tracking UI.
In the Status column, confirm that your job status is Running.
Query streaming data in the Flink SQL client:
SELECT * FROM ICEBERG_TABLE_NAME /*+ OPTIONS('streaming'='true', 'monitor-interval'='3s')*/ ORDER BY order_time desc LIMIT 20;
Query streaming data in BigQuery:
SELECT * FROM `DATABASE_NAME.ICEBERG_TABLE_NAME` ORDER BY order_time desc LIMIT 20;
Terminate the streaming job in the Flink SQL client:
STOP JOB 'JOB_ID';
Replace
JOB_ID
with the job ID that was displayed in the output when you created the streaming job.