Stay organized with collections
Save and categorize content based on your preferences.
Create and query metastore tables from Spark
You can query Apache Spark Iceberg tables in a
BigQuery notebook using open-source engines, such as
Spark. These tables are regular
Iceberg tables with metadata stored in BigLake metastore. The
same table can be queried from both BigQuery and
Spark.
Before you begin
Create an Iceberg table while using Spark in a
BigQuery notebook. The table schema is stored in
BigLake metastore. For example, you can create the table with either
Dataproc, Dataproc Serverless, or a
stored procedure.
View and query a table
After creating your BigQuery resources in
Spark, you can view and query them in the
Google Cloud console. The following example shows you the general
steps to query a metastore table using interactive Spark:
Use the custom Iceberg catalog:
USE`CATALOG_NAME`;
Replace the following:
CATALOG_NAME: the name of the
Spark catalog to that you're using with your
SQL job.
Create a namespace:
CREATENAMESPACEIFNOTEXISTSNAMESPACE_NAME;
Replace the following:
NAMESPACE_NAME: the namespace name that
references your Spark table.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Hard to understand","hardToUnderstand","thumb-down"],["Incorrect information or sample code","incorrectInformationOrSampleCode","thumb-down"],["Missing the information/samples I need","missingTheInformationSamplesINeed","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2025-08-25 UTC."],[],[],null,["# Create and query metastore tables from Spark\n============================================\n\nYou can query Apache Spark Iceberg tables in a\nBigQuery notebook using open-source engines, such as\nSpark. These tables are regular\nIceberg tables with metadata stored in BigLake metastore. The\nsame table can be queried from both BigQuery and\nSpark.\n\nBefore you begin\n----------------\n\n- Create an Iceberg table while using Spark in a BigQuery notebook. The table schema is stored in BigLake metastore. For example, you can create the table with either [Dataproc](/bigquery/docs/blms-use-dataproc), [Dataproc Serverless](/bigquery/docs/blms-use-dataproc-serverless), or a [stored procedure](/bigquery/docs/blms-use-stored-procedures).\n\nView and query a table\n----------------------\n\nAfter creating your BigQuery resources in\nSpark, you can view and query them in the\nGoogle Cloud console. The following example shows you the general\nsteps to query a metastore table using interactive Spark:\n\n1. Use the custom Iceberg catalog:\n\n ```googlesql\n USE `\u003cvar translate=\"no\"\u003eCATALOG_NAME\u003c/var\u003e`;\n ```\n\n Replace the following:\n - \u003cvar translate=\"no\"\u003eCATALOG_NAME\u003c/var\u003e: the name of the Spark catalog to that you're using with your SQL job.\n2. Create a namespace:\n\n ```googlesql\n CREATE NAMESPACE IF NOT EXISTS NAMESPACE_NAME;\n ```\n\n Replace the following:\n - \u003cvar translate=\"no\"\u003eNAMESPACE_NAME\u003c/var\u003e: the namespace name that references your Spark table.\n3. Use the created namespace:\n\n ```googlesql\n USE NAMESPACE_NAME;\n ```\n4. Create an Iceberg table:\n\n ```googlesql\n CREATE TABLE TABLE_NAME (id int, data string) USING ICEBERG;\n ```\n\n Replace the following:\n - \u003cvar translate=\"no\"\u003eTABLE_NAME\u003c/var\u003e: a name for your Iceberg table.\n5. Insert a table row:\n\n ```googlesql\n INSERT INTO TABLE_NAME VALUES (1, \"first row\");\n ```\n6. Use the Google Cloud console to do one of the following:\n\n - [View the table metadata](/bigquery/docs/running-queries#queries)\n - [Query the table](/bigquery/docs/running-queries#queries)\n\n ```googlesql\n SELECT * FROM `\u003cvar translate=\"no\"\u003eTABLE_NAME\u003c/var\u003e`;\n ```\n\nWhat's next\n-----------\n\n- Set up [additional BigLake metastore features](/bigquery/docs/blms-features)."]]