Empfehlungen auf Grundlage impliziten Feedbacks mit einem Matrixfaktorisierungsmodell erstellen


In dieser Anleitung erfahren Sie, wie Sie ein Matrixfaktorisierungsmodell erstellen und mit den Google Analytics 360-Daten zu Nutzersitzungen in der öffentlichen Tabelle GA360_test.ga_sessions_sample trainieren. Anschließend verwenden Sie das Matrixfaktorisierungsmodell, um Inhaltsempfehlungen für Websitebesucher zu generieren.

Die Verwendung indirekter Informationen zu Kundenpräferenzen, z. B. die Dauer der Nutzersitzung, zum Trainieren des Modells wird als Training mit implizitem Feedback bezeichnet. Matrixfaktorisierungsmodelle werden mit dem Algorithmus der gewichteten alternierenden kleinsten Quadrate trainiert, wenn Sie implizites Feedback als Trainingsdaten verwenden.

Lernziele

In dieser Anleitung werden Sie durch die folgenden Aufgaben geführt:

  • Ein Matrixfaktorisierungsmodell mit der CREATE MODEL-Anweisung erstellen.
  • Bewerten Sie das Modell mit der Funktion ML.EVALUATE.
  • Generieren von Inhaltsempfehlungen für Nutzer mithilfe des Modells mit der Funktion ML.RECOMMEND.

Kosten

In dieser Anleitung werden kostenpflichtige Komponenten von Google Cloudverwendet, darunter:

  • BigQuery
  • BigQuery ML

Weitere Informationen zu den Kosten von BigQuery finden Sie auf der Seite BigQuery-Preise.

Weitere Informationen zu den Kosten für BigQuery ML finden Sie unter BigQuery ML-Preise.

Hinweise

  1. Sign in to your Google Cloud account. If you're new to Google Cloud, create an account to evaluate how our products perform in real-world scenarios. New customers also get $300 in free credits to run, test, and deploy workloads.
  2. In the Google Cloud console, on the project selector page, select or create a Google Cloud project.

    Go to project selector

  3. Make sure that billing is enabled for your Google Cloud project.

  4. In the Google Cloud console, on the project selector page, select or create a Google Cloud project.

    Go to project selector

  5. Make sure that billing is enabled for your Google Cloud project.

  6. BigQuery ist in neuen Projekten automatisch aktiviert. So aktivieren Sie BigQuery in einem vorhandenen Projekt:

    Enable the BigQuery API.

    Enable the API

  7. Erforderliche Berechtigungen

    • Sie benötigen die IAM-Berechtigung bigquery.datasets.create, um das Dataset zu erstellen.

    • Zum Erstellen des Modells benötigen Sie die folgenden Berechtigungen:

      • bigquery.jobs.create
      • bigquery.models.create
      • bigquery.models.getData
      • bigquery.models.updateData
    • Zum Ausführen von Inferenzen benötigen Sie die folgenden Berechtigungen:

      • bigquery.models.getData
      • bigquery.jobs.create

    Weitere Informationen zu IAM-Rollen und Berechtigungen in BigQuery finden Sie unter Einführung in IAM.

Dataset erstellen

Erstellen Sie ein BigQuery-Dataset zum Speichern Ihres ML-Modells.

Console

  1. Rufen Sie in der Google Cloud Console die Seite BigQuery auf.

    Zur Seite "BigQuery"

  2. Klicken Sie im Bereich Explorer auf den Namen Ihres Projekts.

  3. Klicken Sie auf Aktionen ansehen > Dataset erstellen.

    Die Menüoption „Dataset erstellen“

  4. Führen Sie auf der Seite Dataset erstellen die folgenden Schritte aus:

    • Geben Sie unter Dataset-ID bqml_tutorial ein.

    • Wählen Sie als Standorttyp die Option Mehrere Regionen und dann USA (mehrere Regionen in den USA) aus.

    • Übernehmen Sie die verbleibenden Standardeinstellungen unverändert und klicken Sie auf Dataset erstellen.

bq

Wenn Sie ein neues Dataset erstellen möchten, verwenden Sie den Befehl bq mk mit dem Flag --location. Eine vollständige Liste der möglichen Parameter finden Sie in der bq mk --dataset-Befehlsreferenz.

  1. Erstellen Sie ein Dataset mit dem Namen bqml_tutorial, wobei der Datenspeicherort auf US und die Beschreibung auf BigQuery ML tutorial dataset festgelegt ist:

    bq --location=US mk -d \
     --description "BigQuery ML tutorial dataset." \
     bqml_tutorial

    Anstelle des Flags --dataset verwendet der Befehl die verkürzte Form -d. Wenn Sie -d und --dataset auslassen, wird standardmäßig ein Dataset erstellt.

  2. Prüfen Sie, ob das Dataset erstellt wurde:

    bq ls

API

Rufen Sie die Methode datasets.insert mit einer definierten Dataset-Ressource auf.

{
  "datasetReference": {
     "datasetId": "bqml_tutorial"
  }
}

BigQuery DataFrames

Bevor Sie dieses Beispiel ausprobieren, folgen Sie den Schritten zur Einrichtung von BigQuery DataFrames in der BigQuery-Kurzanleitung: BigQuery DataFrames verwenden. Weitere Informationen finden Sie in der Referenzdokumentation zu BigQuery DataFrames.

Richten Sie zur Authentifizierung bei BigQuery die Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter ADC für eine lokale Entwicklungsumgebung einrichten.

import google.cloud.bigquery

bqclient = google.cloud.bigquery.Client()
bqclient.create_dataset("bqml_tutorial", exists_ok=True)

Beispieldaten vorbereiten

Die Daten aus der Tabelle GA360_test.ga_sessions_sample werden in eine bessere Struktur für das Modelltraining umgewandelt und dann in eine BigQuery-Tabelle geschrieben. Mit der folgenden Abfrage wird die Sitzungsdauer für jeden Nutzer und jeden Inhalt berechnet. Diese Daten können Sie dann als implizites Feedback verwenden, um die Präferenz des Nutzers für diesen Inhalt abzuleiten.

So erstellen Sie die Tabelle mit Trainingsdaten:

  1. Rufen Sie in der Google Cloud Console die Seite BigQuery auf.

    BigQuery aufrufen

  2. Erstellen Sie die Trainingsdatentabelle. Fügen Sie die folgende Abfrage in den Abfrageeditor ein und klicken Sie auf Ausführen:

    CREATE OR REPLACE TABLE `bqml_tutorial.analytics_session_data`
    AS
    WITH
      visitor_page_content AS (
        SELECT
          fullVisitorID,
          (
            SELECT
              MAX(
                IF(
                  index = 10,
                  value,
                  NULL))
            FROM
              UNNEST(hits.customDimensions)
          ) AS latestContentId,
          (LEAD(hits.time, 1) OVER (PARTITION BY fullVisitorId ORDER BY hits.time ASC) - hits.time)
            AS session_duration
        FROM
          `cloud-training-demos.GA360_test.ga_sessions_sample`,
          UNNEST(hits) AS hits
        WHERE
          # only include hits on pages
          hits.type = 'PAGE'
        GROUP BY
          fullVisitorId,
          latestContentId,
          hits.time
      )
    # aggregate web stats
    SELECT
      fullVisitorID AS visitorId,
      latestContentId AS contentId,
      SUM(session_duration) AS session_duration
    FROM
      visitor_page_content
    WHERE
      latestContentId IS NOT NULL
    GROUP BY
      fullVisitorID,
      latestContentId
    HAVING
      session_duration > 0
    ORDER BY
      latestContentId;
  3. Teilmengen der Trainingsdaten ansehen Fügen Sie die folgende Abfrage in den Abfrageeditor ein und klicken Sie auf Ausführen:

    SELECT * FROM `bqml_tutorial.analytics_session_data` LIMIT 5;

    Die Antwort sollte in etwa so aussehen:

    +---------------------+-----------+------------------+
    | visitorId           | contentId | session_duration |
    +---------------------+-----------+------------------+
    | 7337153711992174438 | 100074831 | 44652            |
    +---------------------+-----------+------------------+
    | 5190801220865459604 | 100170790 | 121420           |
    +---------------------+-----------+------------------+
    | 2293633612703952721 | 100510126 | 47744            |
    +---------------------+-----------+------------------+
    | 5874973374932455844 | 100510126 | 32109            |
    +---------------------+-----------+------------------+
    | 1173698801255170595 | 100676857 | 10512            |
    +---------------------+-----------+------------------+
    

Modell erstellen

Erstellen Sie ein Matrixfaktorisierungsmodell und trainieren Sie es mit den Daten in der Tabelle analytics_session_data. Das Modell wird darauf trainiert, für jedes visitorId-contentId-Paar eine Konfidenzeinstufung vorherzusagen. Die Konfidenzbewertung wird mit Zentrierung und Skalierung nach dem Medianwert für die Sitzungsdauer erstellt. Datensätze, bei denen die Sitzungsdauer mehr als das 3,33-fache des Medianwerts beträgt, werden als Ausreißer herausgefiltert.

Die folgende CREATE MODEL-Anweisung verwendet diese Spalten, um Empfehlungen zu generieren:

  • visitorId: Die Besucher-ID.
  • contentId: die Content-ID
  • rating: die implizite Bewertung von 0 bis 1, die für jedes Besucher-Inhalts-Paar berechnet wurde, wobei die Werte zentriert und skaliert werden
  1. Rufen Sie in der Google Cloud Console die Seite BigQuery auf.

    BigQuery aufrufen

  2. Fügen Sie die folgende Abfrage in den Abfrageeditor ein und klicken Sie auf Ausführen:

    CREATE OR REPLACE MODEL `bqml_tutorial.mf_implicit`
      OPTIONS (
        MODEL_TYPE = 'matrix_factorization',
        FEEDBACK_TYPE = 'implicit',
        USER_COL = 'visitorId',
        ITEM_COL = 'contentId',
        RATING_COL = 'rating',
        L2_REG = 30,
        NUM_FACTORS = 15)
    AS
    SELECT
      visitorId,
      contentId,
      0.3 * (1 + (session_duration - 57937) / 57937) AS rating
    FROM `bqml_tutorial.analytics_session_data`
    WHERE 0.3 * (1 + (session_duration - 57937) / 57937) < 1;

    Die Abfrage dauert etwa 10 Minuten. Anschließend wird das Modell mf_implicit im Bereich Explorer angezeigt. Da die Abfrage eine CREATE MODEL-Anweisung zum Erstellen eines Modells verwendet, werden keine Abfrageergebnisse ausgegeben.

Trainingsstatistiken abrufen

Optional können Sie die Trainingsstatistiken des Modells in derGoogle Cloud Console ansehen.

Ein Algorithmus für maschinelles Lernen erstellt ein Modell, indem er viele Iterationen des Modells mit unterschiedlichen Parametern erstellt und dann die Version des Modells auswählt, die den Verlust minimiert. Dieser Vorgang wird als empirische Risikominimierung bezeichnet. Anhand der Trainingsstatistiken des Modells können Sie den Verlust sehen, der mit jeder Iteration des Modells verbunden ist.

So rufen Sie die Trainingsstatistiken des Modells auf:

  1. Rufen Sie in der Google Cloud Console die Seite BigQuery auf.

    BigQuery aufrufen

  2. Maximieren Sie im Bereich Explorer Ihr Projekt, maximieren Sie das Dataset bqml_tutorial und maximieren Sie dann den Ordner Modelle.

  3. Klicken Sie auf das mf_implicit-Modell und dann auf den Tab Training.

  4. Klicken Sie im Bereich Anzeigen als auf Tabelle. Die Antwort sollte in etwa so aussehen:

    +-----------+--------------------+--------------------+
    | Iteration | Training Data Loss | Duration (seconds) |
    +-----------+--------------------+--------------------+
    |  5        | 0.0027             | 47.27              |
    +-----------+--------------------+--------------------+
    |  4        | 0.0028             | 39.60              |
    +-----------+--------------------+--------------------+
    |  3        | 0.0032             | 55.57              |
    +-----------+--------------------+--------------------+
    |  ...      | ...                | ...                |
    +-----------+--------------------+--------------------+
    

    Die Spalte Trainingsdatenverlust enthält den Verlustmesswert, der berechnet wird, nachdem das Modell trainiert wurde. Da es sich um ein Matrixfaktorisierungsmodell handelt, wird in dieser Spalte die mittlere quadratische Abweichung angezeigt.

Modell bewerten

Bewerten Sie die Leistung des Modells mit der Funktion ML.EVALUATE. Die Funktion ML.EVALUATE vergleicht die vom Modell zurückgegebenen vorhergesagten Altersfreigaben mit den während des Trainings berechneten Bewertungsmesswerten.

So bewerten Sie das Modell:

  1. Rufen Sie in der Google Cloud Console die Seite BigQuery auf.

    BigQuery aufrufen

  2. Fügen Sie die folgende Abfrage in den Abfrageeditor ein und klicken Sie auf Ausführen:

    SELECT
      *
    FROM
      ML.EVALUATE(MODEL `bqml_tutorial.mf_implicit`);

    Die Antwort sollte in etwa so aussehen:

    +------------------------+-----------------------+---------------------------------------+---------------------+
    | mean_average_precision |  mean_squared_error   | normalized_discounted_cumulative_gain |    average_rank     |
    +------------------------+-----------------------+---------------------------------------+---------------------+
    |     0.4434341257478137 | 0.0013381759837648962 |                    0.9433280547112802 | 0.24031636088594222 |
    +------------------------+-----------------------+---------------------------------------+---------------------+
    

    Weitere Informationen zur Ausgabe der ML.EVALUATE-Funktion finden Sie unter Matrixfaktorisierungsmodelle.

Vorhersagen für eine Teilmenge von Besucher-Inhalts-Paaren abrufen

Verwenden Sie ML.RECOMMEND, um die vorhergesagte Bewertung für die einzelnen Inhalte für fünf Websitebesucher zu erhalten.

So rufen Sie die vorhergesagten Altersfreigaben ab:

  1. Rufen Sie in der Google Cloud Console die Seite BigQuery auf.

    BigQuery aufrufen

  2. Fügen Sie die folgende Abfrage in den Abfrageeditor ein und klicken Sie auf Ausführen:

    SELECT
      *
    FROM
      ML.RECOMMEND(
        MODEL `bqml_tutorial.mf_implicit`,
        (
          SELECT
            visitorId
          FROM
            `bqml_tutorial.analytics_session_data`
          LIMIT 5
        ));

    Die Antwort sollte in etwa so aussehen:

    +-------------------------------+---------------------+-----------+
    | predicted_rating_confidence   | visitorId           | contentId |
    +-------------------------------+---------------------+-----------+
    | 0.0033608418060270262         | 7337153711992174438 | 277237933 |
    +-------------------------------+---------------------+-----------+
    | 0.003602395397293956          | 7337153711992174438 | 158246147 |
    +-------------------------------+---------------------+--  -------+
    | 0.0053197670652785356         | 7337153711992174438 | 299389988 |
    +-------------------------------+---------------------+-----------+
    | ...                           | ...                 | ...       |
    +-------------------------------+---------------------+-----------+
    

Empfehlungen generieren

Verwenden Sie die vorhergesagten Bewertungen, um die fünf am häufigsten empfohlenen Content-IDs für jede Besucher-ID zu generieren.

So generieren Sie Empfehlungen:

  1. Rufen Sie in der Google Cloud Console die Seite BigQuery auf.

    BigQuery aufrufen

  2. Schreiben Sie die vorhergesagten Bewertungen in eine Tabelle. Fügen Sie die folgende Abfrage in den Abfrageeditor ein und klicken Sie auf Ausführen:

    CREATE OR REPLACE TABLE `bqml_tutorial.recommend_content`
    AS
    SELECT
      *
    FROM
      ML.RECOMMEND(MODEL `bqml_tutorial.mf_implicit`);
  3. Wählen Sie die fünf besten Ergebnisse pro Besucher aus. Fügen Sie die folgende Abfrage in den Abfrageeditor ein und klicken Sie auf Ausführen:

    SELECT
      visitorId,
      ARRAY_AGG(
        STRUCT(contentId, predicted_rating_confidence)
        ORDER BY predicted_rating_confidence DESC
        LIMIT 5) AS rec
    FROM
      `bqml_tutorial.recommend_content`
    GROUP BY
      visitorId;

    Die Antwort sollte in etwa so aussehen:

    +---------------------+-----------------+---------------------------------+
    | visitorId           | rec:contentId   | rec:predicted_rating_confidence |
    +---------------------+-----------------+-------------------------  ------+
    | 867526255058981688  | 299804319       | 0.88170525357178664             |
    |                     | 299935287       | 0.54699439944935124             |
    |                     | 299410466       | 0.53424780863188659             |
    |                     | 299826767       | 0.46949603950374219             |
    |                     | 299809748       | 0.3379991197434149              |
    +---------------------+-----------------+---------------------------------+
    | 2434264018925667659 | 299824032       | 1.3903516407308065              |
    |                     | 299410466       | 0.9921995618196483              |
    |                     | 299903877       | 0.92333625294129218             |
    |                     | 299816215       | 0.91856701667757279             |
    |                     | 299852437       | 0.86973661454890561             |
    +---------------------+-----------------+---------------------------------+
    | ...                 | ...             | ...                             |
    +---------------------+-----------------+---------------------------------+
    

Bereinigen

Damit Ihrem Google Cloud-Konto die in dieser Anleitung verwendeten Ressourcen nicht in Rechnung gestellt werden, löschen Sie entweder das Projekt, das die Ressourcen enthält, oder Sie behalten das Projekt und löschen die einzelnen Ressourcen.

  • Sie können das von Ihnen erstellte Projekt löschen.
  • Sie können das Projekt aber auch behalten und das Dataset löschen.

Dataset löschen

Wenn Sie Ihr Projekt löschen, werden alle Datasets und Tabellen entfernt. Wenn Sie das Projekt wieder verwenden möchten, können Sie das in dieser Anleitung erstellte Dataset löschen:

  1. Rufen Sie, falls erforderlich, die Seite „BigQuery“ in derGoogle Cloud Console auf.

    Zur Seite „BigQuery“

  2. Wählen Sie im Navigationsbereich das Dataset bqml_tutorial aus, das Sie erstellt haben.

  3. Klicken Sie rechts im Fenster auf Delete dataset (Dataset löschen). Dadurch werden das Dataset, die Tabelle und alle Daten gelöscht.

  4. Bestätigen Sie im Dialogfeld Dataset löschen den Löschbefehl. Geben Sie dazu den Namen des Datasets (bqml_tutorial) ein und klicken Sie auf Löschen.

Projekt löschen

So löschen Sie das Projekt:

  1. In the Google Cloud console, go to the Manage resources page.

    Go to Manage resources

  2. In the project list, select the project that you want to delete, and then click Delete.
  3. In the dialog, type the project ID, and then click Shut down to delete the project.

Nächste Schritte