剖析器擴充功能範例
這份文件提供不同情境下的剖析器擴充功能建立範例。如要進一步瞭解剖析器擴充功能,請參閱「建立剖析器擴充功能」。
剖析器擴充功能範例
請使用下列屬性表格,快速找出所需的範例程式碼。
無程式碼範例
記錄來源格式 | 標題範例 | 說明 | 本例中的剖析器概念 |
---|---|---|---|
JSON (記錄類型: GCP_IDS ) |
擷取欄位 | 從 JSON 格式的記錄中擷取欄位。 | 無程式碼 |
JSON (記錄類型: WORKSPACE_ALERTS ) |
使用前提條件值擷取欄位 | 從 JSON 格式的記錄中擷取欄位,並在符合前提條件的情況下,將其正規化為重複的 UDM 欄位。 |
|
程式碼片段範例
記錄來源格式 | 標題範例 | 說明 | 本例中的剖析器概念 |
---|---|---|---|
JSON (記錄類型:`GCP_IDS`) |
新增 HTTP 使用者代理程式 |
|
|
CSV (記錄類型:MISP_IOC) |
將任意欄位擷取至 additional UDM 物件 |
將欄位擷取到 UDM > 實體 > additional UDM 物件 > 鍵/值組合 |
additional UDM 物件 |
系統記錄檔 (記錄類型:POWERSHELL) |
從系統記錄中擷取優先順序和嚴重程度 | 將 Syslog Facility 和 Severity 值擷取至「UDM Security Result Priority」和「Severity」欄位。 | 以 Grok 為基礎 |
含有 Syslog 標頭的 JSON (記錄類型:WINDOWS_SYSMON) |
根據條件陳述式套用裝飾 |
|
|
含有 Syslog 標頭的 JSON (記錄類型:WINDOWS_SYSMON) |
轉換資料類型 |
|
|
含有 Syslog 標頭的 JSON (記錄類型:WINDOWS_SYSMON) |
方便閱讀的暫時變數名稱 | 您可以在程式碼片段中使用暫時變數名稱,之後再重新命名,與最終輸出 UDM 事件物件名稱相符。這有助於提升整體可讀性。 |
|
含有 Syslog 標頭的 JSON (記錄類型:WINDOWS_SYSMON) |
重複欄位 | 在程式碼片段中使用重複欄位時,請務必謹慎,例如 security_result 欄位。 |
|
XML (記錄類型:WINDOWS_DEFENDER_AV) |
將任意欄位擷取至 additional 物件 |
|
additional 物件用於以自訂鍵/值組合的形式儲存資訊。 |
XML (記錄類型:WINDOWS_DEFENDER_AV) |
將任意欄位擷取至主體主機名稱 |
overwrite 陳述
|
|
JSON、CSV、XML、Syslog 和 KV | 移除現有對應 | 如要移除現有對應,請移除 UDM 欄位的值。 |
JSON 範例
下列範例說明如何建立剖析器擴充功能,其中記錄來源採用 JSON 格式。
無程式碼 - 擷取欄位
屬性範例:
- 記錄來源格式:JSON
- 資料對應方法:無程式碼
- 記錄類型:GCP_IDS
- 剖析器擴充功能的用途:擷取欄位。
說明:
系統不會擷取幾個與網路相關的欄位。由於這個記錄檔範例是 JSON 格式的結構化記錄,我們可以採用無程式碼 (對應資料欄位) 方法建立剖析器擴充功能。
我們要擷取的原始欄位如下:
total_packets
(字串)elapsed_time
(字串)total_bytes
(字串)
原始記錄項目範例如下:
{ "insertId": "625a41542d64c124e7db097ae0906ccb-1@a3", "jsonPayload": { "destination_port": "80", "application": "incomplete", "ip_protocol": "tcp", "network": "projects/prj-p-shared-base/global/networks/shared-vpc-production", "start_time": "2024-10-29T21:14:59Z", "source_port": "41936", "source_ip_address": "35.191.200.157", "total_packets": "6", "elapsed_time": "0", "destination_ip_address": "192.168.0.11", "total_bytes": "412", "repeat_count": "1", "session_id": "1289742" }, "resource": { "type": "ids.googleapis.com/Endpoint", "labels": { "resource_container": "projects/12345678910", "location": "europe-west4-a", "id": "p-europe-west4" } }, "timestamp": "2024-10-29T21:15:21Z", "logName": "projects/prj-p-shared-base/logs/ids.googleapis.com%2Ftraffic", "receiveTimestamp": "2024-10-29T21:15:24.051990717Z" }
這個範例採用無程式碼方法,使用下列資料欄位對應建立剖析器擴充功能:
先決條件 路徑 前置條件運算子 先決條件 值 原始資料路徑 目的地欄位* jsonPayload.total_bytes
NOT_EQUALS "" jsonPayload.total_bytes
udm.principal.network.received_bytes
jsonPayload.elapsed_time
NOT_EQUALS "" jsonPayload.elapsed_time
udm.principal.network.session_duration.seconds
jsonPayload.total_packets
NOT_EQUALS "" jsonPayload.total_packets
udm.principal.network.received_packets
執行剖析器擴充功能後,系統會成功將三個擷取的欄位新增至
principal.network
物件。metadata.product_log_id = "625a41542d64c124e7db097ae0906ccb-1@a3" metadata.event_timestamp = "2024-10-29T21:14:59Z" metadata.event_type = "NETWORK_CONNECTION" metadata.vendor_name = "Google Cloud" metadata.product_name = "IDS" metadata.ingestion_labels[0].key = "label" metadata.ingestion_labels[0].value = "GCP_IDS" metadata.log_type = "GCP_IDS" principal.ip[0] = "35.191.200.157" principal.port = 41936 principal.network.received_bytes = 412 principal.network.session_duration.seconds = "0s" principal.network.received_packets = 6 target.ip[0] = "192.168.0.11" target.port = 80 target.application = "incomplete" observer.location.country_or_region = "EUROPE" observer.location.name = "europe-west4-a" observer.resource.name = "projects/12345678910" observer.resource.resource_type = "CLOUD_PROJECT" observer.resource.attribute.cloud.environment = "GOOGLE_CLOUD_PLATFORM" observer.resource.product_object_id = "p-europe-west4" network.ip_protocol = "TCP" network.session_id = "1289742"
免程式碼 - 使用前置條件值擷取欄位
屬性範例:
- 記錄來源格式:JSON
- 資料對應方法:無程式碼
- 記錄類型:WORKSPACE_ALERTS
- 剖析器擴充功能用途:使用前置條件值擷取欄位。
說明:
原始剖析器不會擷取受 DLP (資料遺失防護) 快訊影響的主要使用者
email address
。這個範例使用無程式碼剖析器擴充功能擷取
email address
,並透過前置條件將其正規化為重複 UDM 欄位。在無程式碼剖析器擴充功能中使用重複欄位時,您必須指出要:
- replace (覆寫現有 UDM 物件中重複欄位的所有值),或
- 附加 (將擷取的值附加至重複欄位)。
詳情請參閱「重複欄位」一節。
這個範例會取代標準化
principal.user.email_address
欄位中的所有現有電子郵件地址。前提條件可讓您在執行擷取作業前,先執行條件式檢查。在大多數情況下,「前置條件欄位」會與您要擷取的「原始資料欄位」相同,且「前置條件運算子」為
not Null
,例如foo != ""
。不過,有時您想擷取的「原始資料欄位」值並非出現在所有記錄項目中,如我們的範例所示。在這種情況下,您可以使用另一個先決條件欄位來篩選擷取作業。在我們的範例中,您要擷取的原始
triggeringUserEmail
欄位只會出現在type = Data Loss Prevention
的記錄中。以下是範例值,請輸入至無程式碼剖析器 擴充功能欄位:
先決條件 路徑 前置條件運算子 先決條件 值 原始資料路徑 目的地欄位* type
等於 資料遺失防護 data.ruleViolationInfo.triggeringUserEmail
udm.principal.user.email_addresses
以下範例顯示以範例值填入的無程式碼剖析器擴充功能欄位:
成功執行剖析器擴充功能後,系統會將
email_address
新增至principal.user
物件。metadata.product_log_id = "Ug71LGqBr6Q=" metadata.event_timestamp = "2022-12-18T12:17:35.154368Z" metadata.event_type = "USER_UNCATEGORIZED" metadata.vendor_name = "Google Workspace" metadata.product_name = "Google Workspace Alerts" metadata.product_event_type = "DlpRuleViolation" metadata.log_type = "WORKSPACE_ALERTS" additional.fields["resource_title"] = "bq-results-20221215-112933-1671103787123.csv" principal.user.email_addresses[0] = "foo.bar@altostrat.com" target.resource.name = "DRIVE" target.resource.resource_type = "STORAGE_OBJECT" target.resource.product_object_id = "1wLteoF3VHljS_8_ABCD_VVbhFTfcTQplJ5k1k7cL4r8" target.labels[0].key = "resource_title" target.labels[0].value = "bq-results-20221321-112933-1671103787697.csv" about[0].resource.resource_type = "CLOUD_ORGANIZATION" about[0].resource.product_object_id = "C01abcde2" security_result[0].about.object_reference.id = "ODU2NjEwZTItMWE2YS0xMjM0LWJjYzAtZTJlMWU2YWQzNzE3" security_result[0].category_details[0] = "Data Loss Prevention" security_result[0].rule_name = "Sensitive Projects Match" security_result[0].summary = "Data Loss Prevention" security_result[0].action[0] = "ALLOW" security_result[0].severity = "MEDIUM" security_result[0].rule_id = "rules/00abcdxs183abcd" security_result[0].action_details = "ALERT, DRIVE_WARN_ON_EXTERNAL_SHARING" security_result[0].alert_state = "ALERTING" security_result[0].detection_fields[0].key = "start_time" security_result[0].detection_fields[0].value = "2022-12-18T12:17:35.154368Z" security_result[0].detection_fields[1].key = "status" security_result[0].detection_fields[1].value = "NOT_STARTED" security_result[0].detection_fields[2].key = "trigger" security_result[0].detection_fields[2].value = "DRIVE_SHARE" security_result[0].rule_labels[0].key = "detector_name" security_result[0].rule_labels[0].value = "EMAIL_ADDRESS" network.email.to[0] = "foo.bar@altostrat.com"
程式碼片段 - 新增 HTTP 使用者代理程式
屬性範例:
- 記錄來源格式:JSON
- 資料對應方法:程式碼片段
- 記錄類型:GCP_IDS
- 剖析器擴充功能用途:新增 HTTP 使用者代理程式。
說明:
這是非標準 UDM 物件類型的範例,無程式碼方法不支援這類物件,因此需要使用程式碼片段。預設剖析器不會擷取
Network HTTP Parser User Agent
分析。此外,為保持一致性:- 系統會從
requestUrl
建立Target Hostname
。 - 系統會指派
Namespace
,確保執行以資產為基礎的別名和擴充功能。
# GCP_LOADBALANCING # owner: @owner # updated: 2022-12-23 # Custom parser extension that: # 1) adds consistent Namespace # 2) adds Parsed User Agent Object filter { # Initialize placeholder mutate { replace => { "httpRequest.userAgent" => "" "httpRequest.requestUrl" => "" } } json { on_error => "not_json" source => "message" array_function => "split_columns" } if ![not_json] { #1 - Override Namespaces mutate { replace => { "event1.idm.read_only_udm.principal.namespace" => "TMO" } } mutate { replace => { "event1.idm.read_only_udm.target.namespace" => "TMO" } } mutate { replace => { "event1.idm.read_only_udm.src.namespace" => "TMO" } } #2 - Parsed User Agent if [httpRequest][requestUrl]!= "" { grok { match => { "httpRequest.requestUrl" => ["\/\/(?P<_hostname>.*?)\/"] } on_error => "_grok_hostname_failed" } if ![_grok_hostname_failed] { mutate { replace => { "event1.idm.read_only_udm.target.hostname" => "%{_hostname}" } } } } if [httpRequest][userAgent] != "" { mutate { convert => { "httpRequest.userAgent" => "parseduseragent" } } #Map the converted "user_agent" to the new UDM field "http.parsed_user_agent". mutate { rename => { "httpRequest.userAgent" => "event1.idm.read_only_udm.network.http.parsed_user_agent" } } } mutate { merge => { "@output" => "event1" } } } }
- 系統會從
CSV 範例
以下範例說明如何建立剖析器擴充功能,其中記錄來源採用 CSV 格式。
程式碼片段 - 將任意欄位擷取到 additional
物件中
屬性範例:
- 記錄來源格式:CSV
- 資料對應方法:程式碼片段
- 記錄類型:MISP_IOC
- 剖析器擴充功能用途:將任意欄位擷取到
additional
物件中。 說明:
本例使用 MISP_IOC UDM 實體內容整合。
additional
鍵/值對 UDM 物件可用來擷取預設剖析器未擷取的脈絡資訊,並新增每個機構專屬的欄位。例如,返回特定 MISP 執行個體的網址。以下是本範例的 CSV 記錄來源:
1
9d66d38a-14e1-407f-a4d1-90b82aa1d59f
2
3908
3
Network activity
4
ip-dst
5
117.253.154.123
6
7
8
1687894564
9
10
11
12
13
14
DigitalSide Malware report\: MD5\: 59ce0baba11893f90527fc951ac69912
15
ORGNAME
16
DIGITALSIDE.IT
17
0
18
Medium
19
0
20
2023-06-23
21
tlp:white,type:OSINT,source:DigitalSide.IT,source:urlhaus.abuse.ch
22
1698036218
# MISP_IOC # owner: @owner # updated: 2024-06-21 # Custom parser extension that: # 1) adds a link back to internal MISP tenant # 2) extracts missing fields into UDM > Entity > Additional fields filter { # Set the base URL for MISP. Remember to replace this placeholder! mutate { replace => { "misp_base_url" => "https://<YOUR_MISP_URL>" } } # Parse the CSV data from the 'message' field. Uses a comma as the separator. # The 'on_error' option handles lines that are not properly formatted CSV. csv { source => "message" separator => "," on_error => "broken_csv" } # If the CSV parsing was successful... if ![broken_csv] { # Rename the CSV columns to more descriptive names. mutate { rename => { "column2" => "event_id" "column8" => "object_timestamp" "column16" => "event_source_org" "column17" => "event_distribution" "column19" => "event_analysis" "column22" => "attribute_timestamp" } } } # Add a link to view the event in MISP, if an event ID is available. # "column2" => "event_id" if [event_id] != "" { mutate { replace => { "additional_url.key" => "view_in_misp" "additional_url.value.string_value" => "%{misp_base_url}/events/view/%{event_id}" } } mutate { merge => { "event.idm.entity.additional.fields" => "additional_url" } } } # Add the object timestamp as an additional field, if available. # "column8" => "object_timestamp" if [object_timestamp] != "" { mutate { replace => { "additional_object_timestamp.key" => "object_timestamp" "additional_object_timestamp.value.string_value" => "%{object_timestamp}" } } mutate { merge => { "event.idm.entity.additional.fields" => "additional_object_timestamp" } } } # Add the event source organization as an additional field, if available. # "column16" => "event_source_org" if [event_source_org] != "" { mutate { replace => { "additional_event_source_org.key" => "event_source_org" "additional_event_source_org.value.string_value" => "%{event_source_org}" } } mutate { merge => { "event.idm.entity.additional.fields" => "additional_event_source_org" } } } # Add the event distribution level as an additional field, if available. # Maps numerical values to descriptive strings. # "column17" => "event_distribution" if [event_distribution] != "" { if [event_distribution] == "0" { mutate { replace => { "additional_event_distribution.value.string_value" => "YOUR_ORGANIZATION_ONLY" } } } else if [event_distribution] == "1" { mutate { replace => { "additional_event_distribution.value.string_value" => "THIS_COMMUNITY_ONLY" } } } else if [event_distribution] == "2" { mutate { replace => { "additional_event_distribution.value.string_value" => "CONNECTED_COMMUNITIES" } } } else if [event_distribution] == "3" { mutate { replace => { "additional_event_distribution.value.string_value" => "ALL_COMMUNITIES" } } } else if [event_distribution] == "4" { mutate { replace => { "additional_event_distribution.value.string_value" => "SHARING_GROUP" } } } else if [event_distribution] == "5" { mutate { replace => { "additional_event_distribution.value.string_value" => "INHERIT_EVENT" } } } mutate { replace => { "additional_event_distribution.key" => "event_distribution" } } mutate { merge => { "event.idm.entity.additional.fields" => "additional_event_distribution" } } } # Add the event analysis level as an additional field, if available. # Maps numerical values to descriptive strings. # "column19" => "event_analysis" if [event_analysis] != "" { if [event_analysis] == "0" { mutate { replace => { "additional_event_analysis.value.string_value" => "INITIAL" } } } else if [event_analysis] == "1" { mutate { replace => { "additional_event_analysis.value.string_value" => "ONGOING" } } } else if [event_analysis] == "2" { mutate { replace => { "additional_event_analysis.value.string_value" => "COMPLETE" } } } mutate { replace => { "additional_event_analysis.key" => "event_analysis" } } mutate { merge => { "event.idm.entity.additional.fields" => "additional_event_analysis" } } } # Add the attribute timestamp as an additional field, if available. # "column22" => "attribute_timestamp" if [attribute_timestamp] != "" { mutate { replace => { "additional_attribute_timestamp.key" => "attribute_timestamp" "additional_attribute_timestamp.value.string_value" => "%{attribute_timestamp}" } } mutate { merge => { "event.idm.entity.additional.fields" => "additional_attribute_timestamp" } } } # Finally, merge the 'event' data into the '@output' field. mutate { merge => { "@output" => "event" } } }
執行剖析器擴充功能後,CSV 中的自訂欄位就會成功新增至
additional
物件。metadata.product_entity_id = "9d66d38a-14e1-407f-a4d1-90b82aa1d59f" metadata.collected_timestamp = "2024-10-31T15:16:08Z" metadata.vendor_name = "MISP" metadata.product_name = "MISP" metadata.entity_type = "IP_ADDRESS" metadata.description = "ip-dst" metadata.interval.start_time = "2023-06-27T19:36:04Z" metadata.interval.end_time = "9999-12-31T23:59:59Z" metadata.threat[0].category_details[0] = "Network activity" metadata.threat[0].description = "tlp:white,type:OSINT,source:DigitalSide.IT,source:urlhaus.abuse.ch - additional info: DigitalSide Malware report: MD5: 59ce0baba11893f90527fc951ac69912" metadata.threat[0].severity_details = "Medium" metadata.threat[0].threat_feed_name = "DIGITALSIDE.IT" entity.ip[0] = "117.253.154.123" additional.fields["view_in_misp"] = "https://
/events/view/3908" additional.fields["object_timestamp"] = "1687894564" additional.fields["event_source_org"] = "DIGITALSIDE.IT" additional.fields["event_distribution"] = "YOUR_ORGANIZATION_ONLY" additional.fields["event_analysis"] = "INITIAL" additional.fields["attribute_timestamp"] = "1698036218"
Grok 範例
下列範例說明如何建立以 Grok 為基礎的剖析器擴充功能。
程式碼片段 (和 Grok) - 擷取優先順序和嚴重性
屬性範例:
- 記錄來源格式:Syslog
- 資料對應方法:使用 Grok 的程式碼片段
- 記錄類型:POWERSHELL
- 剖析器擴充功能用途:擷取優先順序和嚴重性。
說明:
在本範例中,系統會建立以 Grok 為基礎的剖析器擴充功能,將 Syslog Facility 和 Severity 值擷取到 UDM 安全性結果的
Priority
和Severity
欄位。filter { # Use grok to parse syslog messages. The on_error clause handles messages that don't match the pattern. grok { match => { "message" => [ # Extract message with syslog headers. "(<%{POSINT:_syslog_priority}>)%{SYSLOGTIMESTAMP:datetime} %{DATA:logginghost}: %{GREEDYDATA:log_data}" ] } on_error => "not_supported_format" } # If the grok parsing failed, tag the event as unsupported and drop it. if ![not_supported_format] { if [_syslog_priority] != "" { if [_syslog_priority] =~ /0|8|16|24|32|40|48|56|64|72|80|88|96|104|112|120|128|136|144|152|160|168|176|184/ { mutate { replace => { "_security_result.severity_details" => "EMERGENCY" } } } if [_syslog_priority] =~ /1|9|17|25|33|41|49|57|65|73|81|89|97|105|113|121|129|137|145|153|161|169|177|185/ { mutate { replace => { "_security_result.severity_details" => "ALERT" } } } if [_syslog_priority] =~ /2|10|18|26|34|42|50|58|66|74|82|90|98|106|114|122|130|138|146|154|162|170|178|186/ { mutate { replace => { "_security_result.severity_details" => "CRITICAL" } } } if [_syslog_priority] =~ /3|11|19|27|35|43|51|59|67|75|83|91|99|107|115|123|131|139|147|155|163|171|179|187/ { mutate { replace => { "_security_result.severity_details" => "ERROR" } } } if [_syslog_priority] =~ /4|12|20|28|36|44|52|60|68|76|84|92|100|108|116|124|132|140|148|156|164|172|180|188/ { mutate { replace => { "_security_result.severity_details" => "WARNING" } } } if [_syslog_priority] =~ /5|13|21|29|37|45|53|61|69|77|85|93|101|109|117|125|133|141|149|157|165|173|181|189/ { mutate { replace => { "_security_result.severity_details" => "NOTICE" } } } if [_syslog_priority] =~ /6|14|22|30|38|46|54|62|70|78|86|94|102|110|118|126|134|142|150|158|166|174|182|190/ { mutate { replace => { "_security_result.severity_details" => "INFORMATIONAL" } } } if [_syslog_priority] =~ /7|15|23|31|39|47|55|63|71|79|87|95|103|111|119|127|135|143|151|159|167|175|183|191/ { mutate { replace => { "_security_result.severity_details" => "DEBUG" } } } # Facilities (mapped to priority) if [_syslog_priority] =~ /0|1|2|3|4|5|6|7/ { mutate { replace => { "_security_result.priority_details" => "KERNEL" } } } if [_syslog_priority] =~ /8|9|10|11|12|13|14|15/ { mutate { replace => { "_security_result.priority_details" => "USER" } } } if [_syslog_priority] =~ /16|17|18|19|20|21|22|23/ { mutate { replace => { "_security_result.priority_details" => "MAIL" } } } if [_syslog_priority] =~ /24|25|26|27|28|29|30|31/ { mutate { replace => { "_security_result.priority_details" => "SYSTEM" } } } if [_syslog_priority] =~ /32|33|34|35|36|37|38|39/ { mutate { replace => { "_security_result.priority_details" => "SECURITY" } } } if [_syslog_priority] =~ /40|41|42|43|44|45|46|47/ { mutate { replace => { "_security_result.priority_details" => "SYSLOG" } } } if [_syslog_priority] =~ /48|49|50|51|52|53|54|55/ { mutate { replace => { "_security_result.priority_details" => "LPD" } } } if [_syslog_priority] =~ /56|57|58|59|60|61|62|63/ { mutate { replace => { "_security_result.priority_details" => "NNTP" } } } if [_syslog_priority] =~ /64|65|66|67|68|69|70|71/ { mutate { replace => { "_security_result.priority_details" => "UUCP" } } } if [_syslog_priority] =~ /72|73|74|75|76|77|78|79/ { mutate { replace => { "_security_result.priority_details" => "TIME" } } } if [_syslog_priority] =~ /80|81|82|83|84|85|86|87/ { mutate { replace => { "_security_result.priority_details" => "SECURITY" } } } if [_syslog_priority] =~ /88|89|90|91|92|93|94|95/ { mutate { replace => { "_security_result.priority_details" => "FTPD" } } } if [_syslog_priority] =~ /96|97|98|99|100|101|102|103/ { mutate { replace => { "_security_result.priority_details" => "NTPD" } } } if [_syslog_priority] =~ /104|105|106|107|108|109|110|111/ { mutate { replace => { "_security_result.priority_details" => "LOGAUDIT" } } } if [_syslog_priority] =~ /112|113|114|115|116|117|118|119/ { mutate { replace => { "_security_result.priority_details" => "LOGALERT" } } } if [_syslog_priority] =~ /120|121|122|123|124|125|126|127/ { mutate { replace => { "_security_result.priority_details" => "CLOCK" } } } if [_syslog_priority] =~ /128|129|130|131|132|133|134|135/ { mutate { replace => { "_security_result.priority_details" => "LOCAL0" } } } if [_syslog_priority] =~ /136|137|138|139|140|141|142|143/ { mutate { replace => { "_security_result.priority_details" => "LOCAL1" } } } if [_syslog_priority] =~ /144|145|146|147|148|149|150|151/ { mutate { replace => { "_security_result.priority_details" => "LOCAL2" } } } if [_syslog_priority] =~ /152|153|154|155|156|157|158|159/ { mutate { replace => { "_security_result.priority_details" => "LOCAL3" } } } if [_syslog_priority] =~ /160|161|162|163|164|165|166|167/ { mutate { replace => { "_security_result.priority_details" => "LOCAL4" } } } if [_syslog_priority] =~ /168|169|170|171|172|173|174|175/ { mutate { replace => { "_security_result.priority_details" => "LOCAL5" } } } if [_syslog_priority] =~ /176|177|178|179|180|181|182|183/ { mutate { replace => { "_security_result.priority_details" => "LOCAL6" } } } if [_syslog_priority] =~ /184|185|186|187|188|189|190|191/ { mutate { replace => { "_security_result.priority_details" => "LOCAL7" } } } mutate { merge => { "event.idm.read_only_udm.security_result" => "_security_result" } } } mutate { merge => { "@output" => "event" } } } }
查看剖析器擴充功能的結果時,會顯示人類可讀的格式。
metadata.product_log_id = "6161053" metadata.event_timestamp = "2024-10-31T15:10:10Z" metadata.event_type = "PROCESS_LAUNCH" metadata.vendor_name = "Microsoft" metadata.product_name = "PowerShell" metadata.product_event_type = "600" metadata.description = "Info" metadata.log_type = "POWERSHELL" principal.hostname = "win-adfs.lunarstiiiness.com" principal.resource.name = "in_powershell" principal.resource.resource_subtype = "im_msvistalog" principal.asset.hostname = "win-adfs.lunarstiiiness.com" target.hostname = "Default Host" target.process.command_line = "C:\Program Files\Microsoft Azure AD Sync\Bin\miiserver.exe" target.asset.hostname = "Default Host" target.asset.asset_id = "Host ID:bf203e94-72cf-4649-84a5-fc02baedb75f" security_result[0].severity_details = "INFORMATIONAL" security_result[0].priority_details = "USER"
程式碼片段 (和 Grok) - 事件裝飾、暫時變數名稱和資料類型轉換
屬性範例:
- 記錄來源格式:JSON,並包含 Syslog 標頭
- 資料對應方法:使用 Grok 的程式碼片段
- 記錄類型:WINDOWS_SYSMON
- 剖析器擴充功能用途:裝飾事件、暫時性變數名稱和資料類型。
說明:
這個範例說明建立剖析器擴充功能時,如何執行下列動作:
- 根據條件陳述式裝飾,並瞭解程式碼片段中的資料類型。
- 轉換資料類型
- 方便閱讀的暫時變數名稱
- 重複欄位
根據條件陳述式裝飾
這個範例會新增每個事件類型在 WINDOWS_SYSMON 中的意義 (背景資訊) 說明。它會使用條件陳述式檢查 EventID,然後新增
Description
,例如EventID
1 是Process Creation
事件。使用擷取篩選器 (例如 JSON) 時,系統可能會保留原始資料類型。
在以下範例中,系統會預設將
EventID
值擷取為整數。條件陳述式會將EventID
值評估為整數,而非字串。if [EventID] == 1 { mutate { replace => { "_description" => "[1] Process creation" } } }
資料類型轉換
您可以使用 convert 函式,在剖析器擴充功能中轉換資料型別。
mutate { convert => { "EventID" => "string" } on_error => "_convert_EventID_already_string" }
方便閱讀的暫時變數名稱
您可以在程式碼片段中使用暫時變數名稱,稍後再重新命名,與最終輸出 UDM 事件物件名稱相符。這有助於提升整體可讀性。
在以下範例中,
description
變數會重新命名為event.idm.read_only_udm.metadata.description
:mutate { rename => { "_description" => "event.idm.read_only_udm.metadata.description" } }
重複欄位
完整的剖析器擴充功能如下:
filter { # initialize variable mutate { replace => { "EventID" => "" } } # Use grok to parse syslog messages. # The on_error clause handles messages that don't match the pattern. grok { match => { "message" => [ "(<%{POSINT:_syslog_priority}>)%{SYSLOGTIMESTAMP:datetime} %{DATA:logginghost}: %{GREEDYDATA:log_data}" ] } on_error => "not_supported_format" } if ![not_supported_format] { json { source => "log_data" on_error => "not_json" } if ![not_json] { if [EventID] == 1 { mutate { replace => { "_description" => "[1] Process creation" } } } if [EventID] == 2 { mutate { replace => { "_description" => "[2] A process changed a file creation time" } } } if [EventID] == 3 { mutate { replace => { "_description" => "[3] Network connection" } } } if [EventID] == 4 { mutate { replace => { "_description" => "[4] Sysmon service state changed" } } } if [EventID] == 5 { mutate { replace => { "_description" => "[5] Process terminated" } } } if [EventID] == 6 { mutate { replace => { "_description" => "[6] Driver loaded" } } } if [EventID] == 7 { mutate { replace => { "_description" => "[7] Image loaded" } } } if [EventID] == 8 { mutate { replace => { "_description" => "[8] CreateRemoteThread" } } } if [EventID] == 9 { mutate { replace => { "_description" => "[9] RawAccessRead" } } } if [EventID] == 10 { mutate { replace => { "_description" => "[10] ProcessAccess" } } } if [EventID] == 11 { mutate { replace => { "_description" => "[11] FileCreate" } } } if [EventID] == 12 { mutate { replace => { "_description" => "[12] RegistryEvent (Object create and delete)" } } } if [EventID] == 13 { mutate { replace => { "_description" => "[13] RegistryEvent (Value Set)" } } } if [EventID] == 14 { mutate { replace => { "_description" => "[14] RegistryEvent (Key and Value Rename)" } } } if [EventID] == 15 { mutate { replace => { "_description" => "[15] FileCreateStreamHash" } } } if [EventID] == 16 { mutate { replace => { "_description" => "[16] ServiceConfigurationChange" } } } if [EventID] == 17 { mutate { replace => { "_description" => "[17] PipeEvent (Pipe Created)" } } } if [EventID] == 18 { mutate { replace => { "_description" => "[18] PipeEvent (Pipe Connected)" } } } if [EventID] == 19 { mutate { replace => { "_description" => "[19] WmiEvent (WmiEventFilter activity detected)" } } } if [EventID] == 20 { mutate { replace => { "_description" => "[20] WmiEvent (WmiEventConsumer activity detected)" } } } if [EventID] == 21 { mutate { replace => { "_description" => "[21] WmiEvent (WmiEventConsumerToFilter activity detected)" } } } if [EventID] == 22 { mutate { replace => { "_description" => "[22] DNSEvent (DNS query)" } } } if [EventID] == 23 { mutate { replace => { "_description" => "[23] FileDelete (File Delete archived)" } } } if [EventID] == 24 { mutate { replace => { "_description" => "[24] ClipboardChange (New content in the clipboard)" } } } if [EventID] == 25 { mutate { replace => { "_description" => "[25] ProcessTampering (Process image change)" } } } if [EventID] == 26 { mutate { replace => { "_description" => "[26] FileDeleteDetected (File Delete logged)" } } } if [EventID] == 255 { mutate { replace => { "_description" => "[255] Error" } } } mutate { rename => { "_description" => "event.idm.read_only_udm.metadata.description" } } statedump{} mutate { merge => { "@output" => "event" } } } } }
執行剖析器擴充功能後,裝飾項目會成功新增至
metadata.description
欄位。metadata.product_log_id = "6008459" metadata.event_timestamp = "2024-10-31T14:41:53.442Z" metadata.event_type = "REGISTRY_CREATION" metadata.vendor_name = "Microsoft" metadata.product_name = "Microsoft-Windows-Sysmon" metadata.product_event_type = "12" metadata.description = "[12] RegistryEvent (Object create and delete)" metadata.log_type = "WINDOWS_SYSMON" additional.fields["thread_id"] = "3972" additional.fields["channel"] = "Microsoft-Windows-Sysmon/Operational" additional.fields["Keywords"] = "-9223372036854776000" additional.fields["Opcode"] = "Info" additional.fields["ThreadID"] = "3972" principal.hostname = "win-adfs.lunarstiiiness.com" principal.user.userid = "tim.smith_admin" principal.user.windows_sid = "S-1-5-18" principal.process.pid = "6856" principal.process.file.full_path = "C:\Windows\system32\wsmprovhost.exe" principal.process.product_specific_process_id = "SYSMON:{927d35bf-a374-6495-f348-000000002900}" principal.administrative_domain = "LUNARSTIIINESS" principal.asset.hostname = "win-adfs.lunarstiiiness.com" target.registry.registry_key = "HKU\S-1-5-21-3263964631-4121654051-1417071188-1116\Software\Policies\Microsoft\SystemCertificates\CA\Certificates" observer.asset_id = "5770385F:C22A:43E0:BF4C:06F5698FFBD9" observer.process.pid = "2556" about[0].labels[0].key = "Category ID" about[0].labels[0].value = "RegistryEvent" security_result[0].rule_name = "technique_id=T1553.004,technique_name=Install Root Certificate" security_result[0].summary = "Registry object added or deleted" security_result[0].severity = "INFORMATIONAL" security_result[1].rule_name = "EventID: 12" security_result[2].summary = "12"
XML 範例
下列範例說明如何建立剖析器擴充功能,其中記錄來源為 XML 格式。
程式碼片段 - 將任意欄位擷取至 additional
物件
屬性範例:
- 記錄來源格式:XML
- 資料對應方法:程式碼片段
- 記錄類型:WINDOWS_DEFENDER_AV
- 剖析器擴充功能用途:將任意欄位擷取到
additional
物件 說明:
本範例的目標是擷取並儲存
Platform Version
值,例如,以便製作outdated platform versions
的報表及搜尋outdated platform versions
。審查重要 UDM 欄位文件後,我們未發現合適的標準 UDM 欄位。因此,這個範例會使用
additional
物件,將這項資訊儲存為自訂鍵/值組合。# Parser Extension for WINDOWS_DEFENDER_AV # 2024-10-29: cmmartin: Extracting 'Platform Version' into Additional filter { # Uses XPath to target the specific element(s) xml { source => "message" xpath => { "/Event/EventData/Data[@Name='Platform version']" => "platform_version" } on_error => "_xml_error" } # Conditional processing: Only proceed if XML parsing was successful if ![_xml_error] { # Prepare the additional field structure using a temporary variable mutate{ replace => { "additional_platform_version.key" => "Platform Version" "additional_platform_version.value.string_value" => "%{platform_version}" } on_error => "no_platform_version" } # Merge the additional field into the event1 structure. if ![no_platform_version] { mutate { merge => { "event1.idm.read_only_udm.additional.fields" => "additional_platform_version" } } } mutate { merge => { "@output" => "event1" } } } }
執行「PREVIEW UDM OUTPUT」會顯示新欄位已成功新增。
metadata.event_timestamp = "2024-10-29T14:08:52Z" metadata.event_type = "STATUS_HEARTBEAT" metadata.vendor_name = "Microsoft" metadata.product_name = "Windows Defender AV" metadata.product_event_type = "MALWAREPROTECTION_SERVICE_HEALTH_REPORT" metadata.description = "Endpoint Protection client health report (time in UTC)." metadata.log_type = "WINDOWS_DEFENDER_AV" additional.fields["Platform Version"] = "4.18.24080.9" principal.hostname = "win-dc-01.ad.1823127835827.altostrat.com" security_result[0].description = "EventID: 1151" security_result[0].action[0] = "ALLOW" security_result[0].severity = "LOW"
程式碼片段 (和 Grok) - 將任意欄位擷取到主體主機名稱
屬性範例:
- 記錄來源格式:XML
- 資料對應方法:使用 Grok 的程式碼片段
- 記錄類型:WINDOWS_DEFENDER_AV
- 剖析器擴充功能用途:將任意欄位擷取至主體主機名稱
說明:
這個範例的目標是從
FQDN
擷取Hostname
,並覆寫principal.hostname
欄位。這個範例會檢查原始記錄的
Computer name
欄位是否包含FQDN
。如果是,系統只會擷取Hostname
部分,並覆寫 UDMPrincipal Hostname
欄位。查看剖析器和重要 UDM 欄位文件後,很明顯應該使用
principal.hostname
欄位。# Parser Extension for WINDOWS_DEFENDER_AV # 2024-10-29: Extract Hostname from FQDN and overwrite principal.hostname filter { # Uses XPath to target the specific element(s) xml { source => "message" xpath => { "/Event/System/Computer" => "hostname" } on_error => "_xml_error" } # Conditional processing: Only proceed if XML parsing was successful if ![_xml_error] { # Extract all characters before the first dot in the hostname variable grok { match => { "hostname" => "(?<hostname>[^.]+)" } } mutate { replace => { "event1.idm.read_only_udm.principal.hostname" => "%{hostname}" } } mutate { merge => { "@output" => "event1" } } } }
這個剖析器擴充功能會使用 Grok 陳述式執行規則運算式 (regex),藉此擷取
hostname
欄位。規則運算式本身會使用具名擷取群組,也就是說,括號內比對到的任何內容都會儲存在名為hostname
的欄位中,比對一或多個字元,直到遇到半形句號為止。這只會擷取FQDN
內的hostname
。不過,執行「預覽 UDM 輸出內容」時會傳回錯誤。為什麼會這樣?
generic::unknown: pipeline.ParseLogEntry failed: LOG_PARSING_CBN_ERROR: "generic::internal: pipeline failed: filter grok (2) failed: field\ "hostname\" already exists in data and is not overwritable"
Grok
overwrite
陳述式在 Grok 陳述式中,具名擷取群組無法覆寫現有變數,除非使用
overwrite
陳述式明確指定。在這個情境中,我們可以為 Grok 陳述式中的具名擷取群組使用不同的變數名稱,也可以如以下程式碼片段範例所示,使用overwrite
陳述式明確覆寫現有的hostname
變數。# Parser Extension for WINDOWS_DEFENDER_AV # 2024-10-29: cmmartin: Overwriting principal Hostname filter { xml { source => "message" xpath => { "/Event/System/Computer" => "hostname" } on_error => "_xml_error" } if ![_xml_error] { grok { match => { "hostname" => "(?<hostname>[^.]+)" } overwrite => ["hostname"] on_error => "_grok_hostname_error" } mutate { replace => { "event1.idm.read_only_udm.principal.hostname" => "%{hostname}" } } mutate { merge => { "@output" => "event1" } } } }
再次執行「PREVIEW UDM OUTPUT」,會顯示系統已在擷取
FQDN
中的hostname
後,新增該欄位。metadata.event_timestamp"2024-10-29T14:08:52Z" metadata.event_type"STATUS_HEARTBEAT" metadata.vendor_name"Microsoft" metadata.product_name"Windows Defender AV" metadata.product_event_type"MALWAREPROTECTION_SERVICE_HEALTH_REPORT" metadata.description"Endpoint Protection client health report (time in UTC)." metadata.log_type"WINDOWS_DEFENDER_AV" principal.hostname"win-dc-01" security_result[0].description"EventID: 1151" security_result[0].action[0]"ALLOW" security_result[0].severity"LOW"
JSON、CSV、XML、Syslog 和 KV 範例
下列範例說明如何建立剖析器擴充功能,其中記錄來源採用 JSON、CSV、XML、Syslog 或 KV 格式。
程式碼片段 - 移除現有對應
屬性範例:
- 記錄來源格式:JSON、CSV、Syslog、XML 和 KV
- 資料對應方法:程式碼片段
- 剖析器擴充功能用途:移除 UDM 欄位的值
說明:
這些範例的目標是移除 UDM 欄位的值,藉此移除現有對應。
以下範例會移除
string
欄位的值:filter { mutate{ replace => { "event.idm.read_only_udm.metadata.vendor_name" => "" } } mutate { merge => { "@output" => "event" } } }
以下範例會移除
integer
欄位的值:filter { mutate { replace => { "principal_port" => "0" } } mutate { convert => { "principal_port" => "integer" } } mutate { rename => { "principal_port" => "event.idm.read_only_udm.principal.port" } } mutate { merge => { "@output" => "event" } } }
以下範例會移除
float
欄位的值:filter { mutate { replace => { "security_result_object.risk_score" => "0.0" } convert => { "security_result_object.risk_score" => "float" } on_error => "default_risk_score_conversion_failed" } mutate { merge => { "event.idm.read_only_udm.security_result" => "security_result_object" } on_error => "security_result_merge_failed" } mutate { merge => { "@output" => "event" } } }
以下範例會移除
boolean
欄位的值:filter { mutate{ replace => { "tls_established" => "false" } } mutate { convert => { "tls_established" => "boolean" } } mutate { rename => { "tls_established" => "event.idm.read_only_udm.network.tls.established" } } mutate { merge => { "@output" => "event" } } }
以下範例會移除
extension
欄位的值:filter { mutate { replace => { "event.idm.read_only_udm.extensions.auth.auth_details" => "" } on_error => "logon_type_not_set" } mutate { merge => { "@output" => "event" } } }
還有其他問題嗎?向社群成員和 Google SecOps 專業人員尋求答案。