如要在 BigQuery ML 中訓練模型及執行批次推論作業,您可以使用「時間點正確性」一節所述的其中一個時間點查詢函式來擷取特徵。您可以將這些函式加入訓練時 CREATE MODEL 陳述式的 query_statement 子句,或是放送時適當的資料表值函式 (例如 ML.PREDICT) 的 query_statement 子句。
使用 Vertex AI 特徵儲存庫提供特徵
如要為在 Vertex AI 中註冊的 BigQuery ML 模型提供特徵,您可以使用 Vertex AI 特徵儲存庫。Vertex AI 特徵儲存庫會在 BigQuery 的特徵資料表上運作,以低延遲的方式管理及提供特徵。您可以使用線上服務即時擷取特徵,用於線上預測,也可以使用離線服務擷取特徵,用於模型訓練。
如要進一步瞭解如何準備 BigQuery 特徵資料,以便在 Vertex AI 特徵儲存庫中使用,請參閱「準備資料來源」。
[[["容易理解","easyToUnderstand","thumb-up"],["確實解決了我的問題","solvedMyProblem","thumb-up"],["其他","otherUp","thumb-up"]],[["難以理解","hardToUnderstand","thumb-down"],["資訊或程式碼範例有誤","incorrectInformationOrSampleCode","thumb-down"],["缺少我需要的資訊/範例","missingTheInformationSamplesINeed","thumb-down"],["翻譯問題","translationIssue","thumb-down"],["其他","otherDown","thumb-down"]],["上次更新時間:2025-06-19 (世界標準時間)。"],[[["Features must be saved in BigQuery tables before they can be used for BigQuery ML model training and inference."],["Including a timestamp column in feature tables allows for point-in-time correctness, preventing data leakage between training and serving."],["`ML.FEATURES_AT_TIME` and `ML.ENTITY_FEATURES_AT_TIME` functions are used to specify point-in-time cutoffs when retrieving time-sensitive features."],["BigQuery ML models can use point-in-time lookup functions in `CREATE MODEL` statements or in table-valued functions like `ML.PREDICT` to retrieve features for training and batch inference."],["Vertex AI Feature Store can be used to manage and serve features with low latency for BigQuery ML models registered in Vertex AI, supporting both real-time online prediction and offline model training."]]],[]]