```pythonfromgoogle.cloudimportstorageimportrequestsimportbase64importjson# Google Cloud Storage ConfigurationBUCKET_NAME="<bucket-name>"FILE_NAME="qualys_cm_alerts.json"# Qualys API CredentialsQUALYS_USERNAME="<qualys-username>"QUALYS_PASSWORD="<qualys-password>"QUALYS_BASE_URL="https://<qualys_base_url>"deffetch_cm_alerts():"""Fetch alerts from Qualys Continuous Monitoring."""auth=base64.b64encode(f"{QUALYS_USERNAME}:{QUALYS_PASSWORD}".encode()).decode()headers={"Authorization":f"Basic {auth}","Content-Type":"application/xml"}payload=""" <ServiceRequest> <filters> <Criteria field="alert.date" operator="GREATER">2024-01-01</Criteria> </filters> </ServiceRequest> """response=requests.post(f"{QUALYS_BASE_URL}/qps/rest/2.0/search/cm/alert",headers=headers,data=payload)response.raise_for_status()returnresponse.json()defupload_to_gcs(data):"""Upload data to Google Cloud Storage."""client=storage.Client()bucket=client.get_bucket(BUCKET_NAME)blob=bucket.blob(FILE_NAME)blob.upload_from_string(json.dumps(data,indent=2),content_type="application/json")defmain(request):"""Cloud Function entry point."""try:alerts=fetch_cm_alerts()upload_to_gcs(alerts)return"Qualys CM alerts uploaded to Cloud Storage successfully!"exceptExceptionase:returnf"An error occurred: {e}",500```
[[["易于理解","easyToUnderstand","thumb-up"],["解决了我的问题","solvedMyProblem","thumb-up"],["其他","otherUp","thumb-up"]],[["很难理解","hardToUnderstand","thumb-down"],["信息或示例代码不正确","incorrectInformationOrSampleCode","thumb-down"],["没有我需要的信息/示例","missingTheInformationSamplesINeed","thumb-down"],["翻译问题","translationIssue","thumb-down"],["其他","otherDown","thumb-down"]],["最后更新时间 (UTC):2025-09-04。"],[[["\u003cp\u003eThis guide details how to collect and ingest Qualys Continuous Monitoring logs into Google Security Operations (SecOps), including the necessary steps for setup, configuration, and UDM mapping.\u003c/p\u003e\n"],["\u003cp\u003eThe process involves enabling specific APIs in Google Cloud, creating a storage bucket, setting up a service account with proper permissions, and optionally creating a dedicated Qualys API user.\u003c/p\u003e\n"],["\u003cp\u003eA Google Cloud Function is used to fetch alerts from Qualys, and then store them in a GCS Bucket, while Cloud Scheduler is employed to automate the triggering of the function on a set schedule.\u003c/p\u003e\n"],["\u003cp\u003eThe UDM mapping table explains how Qualys log fields are transformed and mapped to their corresponding fields within the Unified Data Model, ensuring proper data normalization.\u003c/p\u003e\n"],["\u003cp\u003eOnce the data is present in the GCS bucket, a new feed must be created in the Google SecOps platform to ingest the information, setting the appropriate source type, log type and storage location, and selecting the appropriate ingestion labels.\u003c/p\u003e\n"]]],[],null,["# Collect Qualys Continuous Monitoring logs\n=========================================\n\nSupported in: \nGoogle secops [SIEM](/chronicle/docs/secops/google-secops-siem-toc)\n| **Note:** This feature is covered by [Pre-GA Offerings Terms](https://chronicle.security/legal/service-terms/) of the Google Security Operations Service Specific Terms. Pre-GA features might have limited support, and changes to pre-GA features might not be compatible with other pre-GA versions. For more information, see the [Google SecOps Technical Support Service guidelines](https://chronicle.security/legal/technical-support-services-guidelines/) and the [Google SecOps Service Specific Terms](https://chronicle.security/legal/service-terms/).\n\nThis Logstash parser code first extracts fields such as source IP, user, method, and application protocol from raw log messages using grok patterns. It thenmaps specific fields from the raw log data to their corresponding fields in the Unified Data Model (UDM), performs data type conversions, and enriches the data with additional labels and metadata before finally structuring the output in the desired UDM format.\n\nBefore you begin\n----------------\n\nEnsure that you have the following prerequisites:\n\n- Google Security Operations instance.\n- Privileged access to Google Cloud.\n- Privileged access to Qualys.\n\nEnable Required APIs:\n---------------------\n\n1. Sign in to the Google Cloud console.\n2. Go to **APIs \\& Services** \\\u003e **Library**.\n3. Search for the following APIs and enable them:\n - Cloud Functions API\n - Cloud Scheduler API\n - Cloud Pub/Sub (required for Cloud Scheduler to invoke functions)\n\nCreate a Google Cloud Storage Bucket\n------------------------------------\n\n1. Sign in to the Google Cloud console.\n2. Go to the **Cloud Storage Buckets** page.\n\n [Go to Buckets](https://console.cloud.google.com/storage/browser)\n3. Click **Create**.\n\n4. Configure the bucket:\n\n - **Name** : enter a unique name that meets the bucket name requirements (for example, **qualys-asset-bucket**).\n - **Choose where to store your data**: select a location.\n - **Choose a storage class for your data** : either select a **default storage class** for the bucket, or select **Autoclass** for automatic storage class management.\n - **Choose how to control access to objects** : select **not** to enforce **public access prevention** , and select an **access control model** for your bucket's objects.\n\n | **Note:** If public access prevention is already enforced by your project's organization policy, the **Prevent public access** checkbox is locked.\n - **Storage class** : choose based on your needs (for example, **Standard**).\n5. Click **Create**.\n\n| **Note:** Do not set a retention policy, as the last data entry may need to be overwritten in case of a timeout.\n\nCreate a Google Cloud Service Account\n-------------------------------------\n\n1. Sign in to the Google Cloud console.\n2. Go to to **IAM \\& Admin** \\\u003e **Service Accounts**.\n3. Create a new service account.\n4. Give it a descriptive name (for example, **qualys-user**).\n5. Grant the service account with **Storage Object Admin** role on the GCS bucket you created in the previous step.\n6. Grant the service account with **Cloud Functions Invoker** role.\n7. Create an [**SSH key**](/iam/docs/keys-create-delete) for the service account.\n8. Download a JSON key file for the service account. Keep this file secure.\n\nOptional: Create a dedicated API User in Qualys\n-----------------------------------------------\n\n1. Sign in to the Qualys console.\n2. Go to **Users**.\n3. Click **New** \\\u003e **User**.\n4. Enter the **General Information** required for the user.\n5. Select the **User Role** tab.\n6. Make sure the role has the **API Access** checkbox selected.\n7. Click **Save**.\n\nIdentify your specific Qualys API URL\n-------------------------------------\n\n### Option 1\n\nIdentify your URLs as mentioned in the [platform identification](https://www.qualys.com/platform-identification).\n\n### Option 2\n\n1. Sign in to the Qualys console.\n2. Go to **Help** \\\u003e **About**.\n3. Scroll to see this information under Security Operations Center (SOC).\n4. Copy the Qualys API URL.\n\nConfigure the Cloud Function\n----------------------------\n\n1. Go to **Cloud Functions** in the Google Cloud console.\n2. Click **Create Function**.\n3. Configure the Function:\n\n - **Name** : enter a name for your function (for example, **fetch-qualys-cm-alerts**).\n - **Region**: select a region close to your Bucket.\n - **Runtime**: Python 3.10 (or your preferred runtime).\n - **Trigger**: choose HTTP trigger if needed or Cloud Pub/Sub for scheduled execution.\n - **Authentication**: secure with authentication.\n - **Write the Code** with an inline editor:\n\n **Note:** Make sure to replace the following with your data: `\u003cbucket-name\u003e`, `\u003cqualys-username\u003e`, `\u003cqualys-password\u003e`, `\u003cqualys_base_url\u003e`. \n\n ```python\n from google.cloud import storage\n import requests\n import base64\n import json\n\n # Google Cloud Storage Configuration\n BUCKET_NAME = \"\u003cbucket-name\u003e\"\n FILE_NAME = \"qualys_cm_alerts.json\"\n\n # Qualys API Credentials\n QUALYS_USERNAME = \"\u003cqualys-username\u003e\"\n QUALYS_PASSWORD = \"\u003cqualys-password\u003e\"\n QUALYS_BASE_URL = \"https://\u003cqualys_base_url\u003e\"\n\n def fetch_cm_alerts():\n \"\"\"Fetch alerts from Qualys Continuous Monitoring.\"\"\"\n auth = base64.b64encode(f\"{QUALYS_USERNAME}:{QUALYS_PASSWORD}\".encode()).decode()\n headers = {\n \"Authorization\": f\"Basic {auth}\",\n \"Content-Type\": \"application/xml\"\n }\n payload = \"\"\"\n \u003cServiceRequest\u003e\n \u003cfilters\u003e\n \u003cCriteria field=\"alert.date\" operator=\"GREATER\"\u003e2024-01-01\u003c/Criteria\u003e\n \u003c/filters\u003e\n \u003c/ServiceRequest\u003e\n \"\"\"\n response = requests.post(f\"{QUALYS_BASE_URL}/qps/rest/2.0/search/cm/alert\", headers=headers, data=payload)\n response.raise_for_status()\n return response.json()\n\n def upload_to_gcs(data):\n \"\"\"Upload data to Google Cloud Storage.\"\"\"\n client = storage.Client()\n bucket = client.get_bucket(BUCKET_NAME)\n blob = bucket.blob(FILE_NAME)\n blob.upload_from_string(json.dumps(data, indent=2), content_type=\"application/json\")\n\n def main(request):\n \"\"\"Cloud Function entry point.\"\"\"\n try:\n alerts = fetch_cm_alerts()\n upload_to_gcs(alerts)\n return \"Qualys CM alerts uploaded to Cloud Storage successfully!\"\n except Exception as e:\n return f\"An error occurred: {e}\", 500\n ```\n\n4. Click **Deploy** after completing the configuration.\n\nConfigure Cloud Scheduler\n-------------------------\n\n1. Go to **Cloud Scheduler** in the Google Cloud console.\n2. Click **Create Job**.\n3. Configure the Job:\n\n - **Name** : enter a name for your job (for example, **trigger-fetch-qualys-cm-alerts**).\n - **Frequency** : use **cron** syntax to specify the schedule (for example, `0 * * * *` to run every hour).\n - **Time Zone**: set your preferred time zone.\n - **Trigger Type** : choose **HTTP**.\n - **Trigger URL**: Enter the Cloud Function's URL (found in the function details after deployment).\n - **Method** : Choose **POST**.\n\n | **Note:** If authentication is enabled for the function, select **Service Account** and ensure the account has the **Cloud Functions Invoker** role.\n4. Create the job.\n\nSet up feeds\n------------\n\nTo configure a feed, follow these steps:\n\n1. Go to **SIEM Settings** \\\u003e **Feeds**.\n2. Click **Add New Feed**.\n3. On the next page, click **Configure a single feed**.\n4. In the **Feed name** field, enter a name for the feed; for example, **Qualys Continuous Monitoring Logs**.\n5. Select **Google Cloud Storage V2** as the **Source type**.\n6. Select **Qualys Continuous Monitoring** as the **Log type**.\n7. Click **Next**.\n8. Specify values for the following input parameters:\n\n - **Storage Bucket URI**: the Google Cloud storage bucket source URI.\n - **Source deletion options**: select the deletion option according to your preference.\n\n | **Note:** If you select the `Delete transferred files` or `Delete transferred files and empty directories` option, make sure that you granted appropriate permissions to the service account. \\* **Maximum File Age**: Includes files modified in the last number of days. Default is 180 days.\n9. Click **Next**.\n\n10. Review your new feed configuration in the **Finalize** screen, and then click **Submit**.\n\nUDM Mapping Table\n-----------------\n\n**Need more help?** [Get answers from Community members and Google SecOps professionals.](https://security.googlecloudcommunity.com/google-security-operations-2)"]]