Collect Harness IO audit logs
This document explains how to ingest Harness IO audit logs to Google Security Operations using Amazon S3.
Before you begin
- Google SecOps instance
- Privileged access to Harness (API key and account ID)
- Privileged access to AWS (S3, IAM, Lambda, EventBridge)
Get Harness API key and account ID for a Personal Account
- Sign in to the Harness web UI.
- Go to your User Profile > My API Keys.
- Select API Key.
- Enter a Name for the API key.
- Click Save.
- Select Token under your new API key.
- Enter a Name for the token.
- Click Generate Token.
- Copy and save the token in a secure location.
- Copy and save your Account ID (appears in the Harness URL and in Account Settings).
Optional: Get Harness API key and account ID for a service account
- Sign in to the Harness web UI.
- Create a service account
- Go to Account Settings > Access Control.
- Select Service Accounts > select the service account for which you want to create an API key.
- Under API Keys, select API Key.
- Enter a Name for the API key.
- Click Save.
- Select Token under the new API key.
- Enter a Name for the token.
- Click Generate Token.
- Copy and save the token in a secure location.
- Copy and save your Account ID (appears in the Harness URL and in Account Settings).
Configure AWS S3 bucket and IAM for Google SecOps
- Create Amazon S3 bucket following this user guide: Creating a bucket
- Save bucket Name and Region for future reference (for example,
harness-io
). - Create a user following this user guide: Creating an IAM user.
- Select the created User.
- Select the Security credentials tab.
- Click Create Access Key in the Access Keys section.
- Select Third-party service as the Use case.
- Click Next.
- Optional: add a description tag.
- Click Create access key.
- Click Download CSV file to save the Access Key and Secret Access Key for later use.
- Click Done.
- Select the Permissions tab.
- Click Add permissions in the Permissions policies section.
- Select Add permissions.
- Select Attach policies directly
- Search for and select the AmazonS3FullAccess policy.
- Click Next.
- Click Add permissions.
Configure the IAM policy and role for S3 uploads
- In the AWS console, go to IAM > Policies > Create policy > JSON tab.
Enter the following policy:
{ "Version": "2012-10-17", "Statement": [ { "Sid": "AllowPutHarnessObjects", "Effect": "Allow", "Action": "s3:PutObject", "Resource": "arn:aws:s3:::harness-io/*" }, { "Sid": "AllowGetStateObject", "Effect": "Allow", "Action": "s3:GetObject", "Resource": "arn:aws:s3:::harness-io/harness/audit/state.json" } ] }
- Replace
harness-io
if you entered a different bucket name):
- Replace
Click Next > Create policy.
Go to IAM > Roles > Create role > AWS service > Lambda.
Attach the newly created policy.
Name the role
WriteHarnessToS3Role
and click Create role.
Create the Lambda function
- In the AWS Console, go to Lambda > Functions > Create function.
- Click Author from scratch.
Provide the following configuration details:
Setting Value Name harness_io_to_s3
Runtime Python 3.13 Architecture x86_64 Execution role WriteHarnessToS3Role
After the function is created, open the Code tab, delete the stub and enter the following the code (
harness_io_to_s3.py
).#!/usr/bin/env python3 import os, json, time, urllib.parse from urllib.request import Request, urlopen from urllib.error import HTTPError, URLError import boto3 API_BASE = os.environ.get("HARNESS_API_BASE", "https://app.harness.io").rstrip("/") ACCOUNT_ID = os.environ["HARNESS_ACCOUNT_ID"] API_KEY = os.environ["HARNESS_API_KEY"] # x-api-key token BUCKET = os.environ["S3_BUCKET"] PREFIX = os.environ.get("S3_PREFIX", "harness/audit/").strip("/") STATE_KEY = os.environ.get("STATE_KEY", "harness/audit/state.json") PAGE_SIZE = min(int(os.environ.get("PAGE_SIZE", "100")), 100) # <=100 START_MINUTES_BACK = int(os.environ.get("START_MINUTES_BACK", "60")) s3 = boto3.client("s3") HDRS = {"x-api-key": API_KEY, "Content-Type": "application/json", "Accept": "application/json"} def _read_state(): try: obj = s3.get_object(Bucket=BUCKET, Key=STATE_KEY) j = json.loads(obj["Body"].read()) return j.get("since"), j.get("pageToken") except Exception: return None, None def _write_state(since_ms: int, page_token: str | None): body = json.dumps({"since": since_ms, "pageToken": page_token}).encode("utf-8") s3.put_object(Bucket=BUCKET, Key=STATE_KEY, Body=body, ContentType="application/json") def _http_post(path: str, body: dict, query: dict, timeout: int = 60, max_retries: int = 5) -> dict: qs = urllib.parse.urlencode(query) url = f"{API_BASE}{path}?{qs}" data = json.dumps(body).encode("utf-8") attempt, backoff = 0, 1.0 while True: req = Request(url, data=data, method="POST") for k, v in HDRS.items(): req.add_header(k, v) try: with urlopen(req, timeout=timeout) as r: return json.loads(r.read().decode("utf-8")) except HTTPError as e: if (e.code == 429 or 500 <= e.code <= 599) and attempt < max_retries: time.sleep(backoff) attempt += 1 backoff *= 2 continue raise except URLError: if attempt < max_retries: time.sleep(backoff) attempt += 1 backoff *= 2 continue raise def _write_page(obj: dict, now: float, page_index: int) -> str: ts = time.strftime("%Y/%m/%d/%H%M%S", time.gmtime(now)) key = f"{PREFIX}/{ts}-page{page_index:05d}.json" s3.put_object( Bucket=BUCKET, Key=key, Body=json.dumps(obj, separators=(",", ":")).encode("utf-8"), ContentType="application/json", ) return key def fetch_and_store(): now_s = time.time() since_ms, page_token = _read_state() if since_ms is None: since_ms = int((now_s - START_MINUTES_BACK * 60) * 1000) until_ms = int(now_s * 1000) page_index = 0 total = 0 while True: body = {"startTime": since_ms, "endTime": until_ms} query = {"accountIdentifier": ACCOUNT_ID, "pageSize": PAGE_SIZE} if page_token: query["pageToken"] = page_token else: query["pageIndex"] = page_index data = _http_post("/audit/api/audits/listV2", body, query) _write_page(data, now_s, page_index) entries = [] for key in ("data", "content", "response", "resource", "resources", "items"): if isinstance(data.get(key), list): entries = data[key] break total += len(entries) if isinstance(entries, list) else 0 next_token = ( data.get("pageToken") or (isinstance(data.get("meta"), dict) and data["meta"].get("pageToken")) or (isinstance(data.get("metadata"), dict) and data["metadata"].get("pageToken")) ) if next_token: page_token = next_token page_index += 1 continue if len(entries) < PAGE_SIZE: break page_index += 1 _write_state(until_ms, None) return {"pages": page_index + 1, "objects_estimate": total} def lambda_handler(event=None, context=None): return fetch_and_store() if __name__ == "__main__": print(lambda_handler())
Go to Configuration > Environment variables > Edit > Add new environment variable.
Enter the following environment variables, replacing with your values:
Key Example S3_BUCKET
harness-io
S3_PREFIX
harness/audit/
STATE_KEY
harness/audit/state.json
HARNESS_ACCOUNT_ID
123456789
HARNESS_API_KEY
harness_xxx_token
HARNESS_API_BASE
https://app.harness.io
PAGE_SIZE
100
START_MINUTES_BACK
60
After the function is created, stay on its page (or open Lambda > Functions > your‑function).
Select the Configuration tab.
In the General configuration panel click Edit.
Change Timeout to 5 minutes (300 seconds) and click Save.
Create an EventBridge schedule
- Go to Amazon EventBridge > Scheduler > Create schedule.
Provide the following configuration details:
- Recurring schedule: Rate (
1 hour
). - Target: your Lambda function.
- Name:
harness-io-1h
.
- Recurring schedule: Rate (
Click Create schedule.
Create read-only IAM user & keys for Google SecOps
- In the AWS Console, go to IAM > Users, then click Add users.
- Provide the following configuration details:
- User: Enter a unique name (for example,
secops-reader
) - Access type: Select Access key - Programmatic access
- Click Create user.
- User: Enter a unique name (for example,
- Attach minimal read policy (custom): Users > select
secops-reader
> Permissions > Add permissions > Attach policies directly > Create policy In the JSON editor, enter the following policy:
{ "Version": "2012-10-17", "Statement": [ { "Effect": "Allow", "Action": ["s3:GetObject"], "Resource": "arn:aws:s3:::<your-bucket>/*" }, { "Effect": "Allow", "Action": ["s3:ListBucket"], "Resource": "arn:aws:s3:::<your-bucket>" } ] }
Set the name to
secops-reader-policy
.Go to Create policy > search/select > Next > Add permissions.
Go to Security credentials > Access keys > Create access key.
Download the CSV (these values are entered into the feed).
Configure a feed in Google SecOps to ingest Harness IO logs
- Go to SIEM Settings > Feeds.
- Click Add New Feed.
- In the Feed name field, enter a name for the feed (for example,
Harness IO
). - Select Amazon S3 V2 as the Source type.
- Select Harness IO as the Log type.
- Click Next.
- Specify values for the following input parameters:
- S3 URI:
s3://harness-io/harness/audit/
- Source deletion options: Select the deletion option according to your preference.
- Maximum File Age: Default 180 Days.
- Access Key ID: User access key with access to the S3 bucket.
- Secret Access Key: User secret key with access to the S3 bucket.
- Asset namespace: The asset namespace.
- Ingestion labels: The label to be applied to the events from this feed.
- S3 URI:
- Click Next.
- Review your new feed configuration in the Finalize screen, and then click Submit.
Need more help? Get answers from Community members and Google SecOps professionals.