Pengantar data tabulasi: Menyiapkan project dan lingkungan Anda
Tetap teratur dengan koleksi
Simpan dan kategorikan konten berdasarkan preferensi Anda.
Tutorial ini memandu Anda melakukan langkah-langkah yang diperlukan untuk melatih dan mendapatkan prediksi
dari model data tabulasi di konsol Google Cloud .
Jika Anda berencana menggunakan Vertex AI SDK untuk Python, pastikan akun layanan yang menginisialisasi klien memiliki peran IAM Vertex AI Service Agent (roles/aiplatform.serviceAgent).
Untuk bagian tutorial ini, Anda akan menyiapkan project Google Cloud untuk menggunakan
Vertex AI dan bucket Cloud Storage yang berisi dokumen
untuk melatih model AutoML Anda.
Menyiapkan project dan lingkungan
In the Google Cloud console, go to the project selector page.
Buka Cloud Shell.
Cloud Shell adalah lingkungan shell interaktif
untuk Google Cloud yang dapat Anda gunakan untuk mengelola project dan resource dari
browser web.
Di Cloud Shell, tetapkan project saat ini ke project ID Google Cloud
Anda dan simpan dalam variabel shell projectid:
gcloud config set project PROJECT_ID &&
projectid=PROJECT_ID &&
echo $projectid
Ganti PROJECT_ID dengan project ID Anda. Anda dapat
menemukan project ID di konsol Google Cloud . Untuk mengetahui informasi selengkapnya, lihat
Menemukan project ID.
Enable the IAM, Compute Engine, Notebooks, Cloud Storage, and Vertex AI APIs.
In the Principal column, find all rows that identify you or a group that
you're included in. To learn which groups you're included in, contact your
administrator.
For all rows that specify or include you, check the Role column to see whether
the list of roles includes the required roles.
Di kolom Akun utama baru, masukkan ID pengguna Anda.
Biasanya berupa alamat email untuk Akun Google.
Di daftar Pilih peran, pilih peran.
Untuk memberikan peran tambahan, klik addTambahkan
peran lain, lalu tambahkan setiap peran tambahan.
Klik Simpan.
Peran IAM Pengguna Vertex AI (roles/aiplatform.user)
menyediakan akses untuk menggunakan semua resource di Vertex AI. Peran Storage Admin
(roles/storage.admin) memungkinkan Anda menyimpan set data pelatihan
dokumen di Cloud Storage.
[[["Mudah dipahami","easyToUnderstand","thumb-up"],["Memecahkan masalah saya","solvedMyProblem","thumb-up"],["Lainnya","otherUp","thumb-up"]],[["Sulit dipahami","hardToUnderstand","thumb-down"],["Informasi atau kode contoh salah","incorrectInformationOrSampleCode","thumb-down"],["Informasi/contoh yang saya butuhkan tidak ada","missingTheInformationSamplesINeed","thumb-down"],["Masalah terjemahan","translationIssue","thumb-down"],["Lainnya","otherDown","thumb-down"]],["Terakhir diperbarui pada 2025-08-19 UTC."],[],[],null,["# Hello tabular data: Set up your project and environment\n\nThis tutorial walks you through the required steps to train and get predictions\nfrom your tabular data model in the Google Cloud console.\nIf you plan to use the Vertex AI SDK for Python, make sure that the service account\ninitializing the client has the\n[Vertex AI Service Agent](/vertex-ai/docs/general/access-control#aiplatform.serviceAgent)\n(`roles/aiplatform.serviceAgent`) IAM role.\n\nFor this part of the tutorial, you set up your Google Cloud project to use\nVertex AI and a Cloud Storage bucket that contains the documents\nfor training your AutoML model.\n\nSet up your project and environment\n-----------------------------------\n\n1. In the Google Cloud console, go to the project selector page.\n\n [Go to project selector](https://console.cloud.google.com/projectselector2/home/dashboard)\n2. Select or create a Google Cloud project.\n\n | **Note**: If you don't plan to keep the resources that you create in this procedure, create a project instead of selecting an existing project. After you finish these steps, you can delete the project, removing all resources associated with the project.\n3.\n [Verify that billing is enabled for your Google Cloud project](/billing/docs/how-to/verify-billing-enabled#confirm_billing_is_enabled_on_a_project).\n\n4. Open [Cloud Shell](/shell/docs/launching-cloud-shell-editor). Cloud Shell is an interactive shell environment for Google Cloud that lets you manage your projects and resources from your web browser.\n[Go to Cloud Shell](https://ssh.cloud.google.com/cloudshell/editor)\n5. In the Cloud Shell, set the current project to your Google Cloud project ID and store it in the `projectid` shell variable: \n\n ```\n gcloud config set project PROJECT_ID &&\n projectid=PROJECT_ID &&\n echo $projectid\n ```\n Replace \u003cvar translate=\"no\"\u003ePROJECT_ID\u003c/var\u003e with your project ID. You can locate your project ID in the Google Cloud console. For more information, see [Find your project ID](/vertex-ai/docs/tutorials/tabular-bq-prediction/prerequisites#find-project-id).\n6.\n\n\n Enable the IAM, Compute Engine, Notebooks, Cloud Storage, and Vertex AI APIs.\n\n\n [Enable the APIs](https://console.cloud.google.com/flows/enableapi?apiid=iam.googleapis.com, compute.googleapis.com,notebooks.googleapis.com storage.googleapis.com aiplatform.googleapis.com)\n7. \n8.\n\n Make sure that you have the following role or roles on the project:\n\n roles/aiplatform.user, roles/storage.admin\n\n #### Check for the roles\n\n 1.\n In the Google Cloud console, go to the **IAM** page.\n\n [Go to IAM](https://console.cloud.google.com/projectselector/iam-admin/iam?supportedpurview=project)\n 2. Select the project.\n 3.\n In the **Principal** column, find all rows that identify you or a group that\n you're included in. To learn which groups you're included in, contact your\n administrator.\n\n 4. For all rows that specify or include you, check the **Role** column to see whether the list of roles includes the required roles.\n\n #### Grant the roles\n\n 1.\n In the Google Cloud console, go to the **IAM** page.\n\n [Go to IAM](https://console.cloud.google.com/projectselector/iam-admin/iam?supportedpurview=project)\n 2. Select the project.\n 3. Click person_add **Grant access**.\n 4.\n In the **New principals** field, enter your user identifier.\n\n This is typically the email address for a Google Account.\n\n 5. In the **Select a role** list, select a role.\n 6. To grant additional roles, click add **Add\n another role** and add each additional role.\n 7. Click **Save**.\n9. The Vertex AI User (`roles/aiplatform.user`) IAM role provides access to use all resources in Vertex AI. The [Storage Admin](/storage/docs/access-control/iam-roles) (`roles/storage.admin`) role lets you store the document's training dataset in Cloud Storage.\n\n\u003cbr /\u003e\n\nWhat's next\n-----------\n\nFollow the [next page of this tutorial](/vertex-ai/docs/tutorials/tabular-automl/dataset-train) to\ncreate a tabular dataset and train a classification model."]]