Hello tabular data: Set up your project and environment
Stay organized with collections
Save and categorize content based on your preferences.
This tutorial walks you through the required steps to train and get predictions
from your tabular data model in the Google Cloud console.
If you plan to use the Vertex AI SDK for Python, make sure that the service account
initializing the client has the
Vertex AI Service Agent
(roles/aiplatform.serviceAgent) IAM role.
For this part of the tutorial, you set up your Google Cloud project to use
Vertex AI and a Cloud Storage bucket that contains the documents
for training your AutoML model.
Set up your project and environment
In the Google Cloud console, go to the project selector page.
Open Cloud Shell.
Cloud Shell is an interactive shell environment
for Google Cloud that lets you manage your projects and resources from
your web browser.
In the Principal column, find all rows that identify you or a group that
you're included in. To learn which groups you're included in, contact your
administrator.
For all rows that specify or include you, check the Role column to see whether
the list of roles includes the required roles.
In the New principals field, enter your user identifier.
This is typically the email address for a Google Account.
In the Select a role list, select a role.
To grant additional roles, click addAdd
another role and add each additional role.
Click Save.
The Vertex AI User (roles/aiplatform.user) IAM
role provides access to use all resources in Vertex AI. The Storage Admin
(roles/storage.admin) role lets you store the document's
training dataset in Cloud Storage.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Hard to understand","hardToUnderstand","thumb-down"],["Incorrect information or sample code","incorrectInformationOrSampleCode","thumb-down"],["Missing the information/samples I need","missingTheInformationSamplesINeed","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2025-09-03 UTC."],[],[],null,["# Hello tabular data: Set up your project and environment\n\nThis tutorial walks you through the required steps to train and get predictions\nfrom your tabular data model in the Google Cloud console.\nIf you plan to use the Vertex AI SDK for Python, make sure that the service account\ninitializing the client has the\n[Vertex AI Service Agent](/vertex-ai/docs/general/access-control#aiplatform.serviceAgent)\n(`roles/aiplatform.serviceAgent`) IAM role.\n\nFor this part of the tutorial, you set up your Google Cloud project to use\nVertex AI and a Cloud Storage bucket that contains the documents\nfor training your AutoML model.\n\nSet up your project and environment\n-----------------------------------\n\n1. In the Google Cloud console, go to the project selector page.\n\n [Go to project selector](https://console.cloud.google.com/projectselector2/home/dashboard)\n2. Select or create a Google Cloud project.\n\n | **Note**: If you don't plan to keep the resources that you create in this procedure, create a project instead of selecting an existing project. After you finish these steps, you can delete the project, removing all resources associated with the project.\n3.\n [Verify that billing is enabled for your Google Cloud project](/billing/docs/how-to/verify-billing-enabled#confirm_billing_is_enabled_on_a_project).\n\n4. Open [Cloud Shell](/shell/docs/launching-cloud-shell-editor). Cloud Shell is an interactive shell environment for Google Cloud that lets you manage your projects and resources from your web browser.\n[Go to Cloud Shell](https://ssh.cloud.google.com/cloudshell/editor)\n5. In the Cloud Shell, set the current project to your Google Cloud project ID and store it in the `projectid` shell variable: \n\n ```\n gcloud config set project PROJECT_ID &&\n projectid=PROJECT_ID &&\n echo $projectid\n ```\n Replace \u003cvar translate=\"no\"\u003ePROJECT_ID\u003c/var\u003e with your project ID. You can locate your project ID in the Google Cloud console. For more information, see [Find your project ID](/vertex-ai/docs/tutorials/tabular-bq-prediction/prerequisites#find-project-id).\n6.\n\n\n Enable the IAM, Compute Engine, Notebooks, Cloud Storage, and Vertex AI APIs.\n\n\n [Enable the APIs](https://console.cloud.google.com/flows/enableapi?apiid=iam.googleapis.com, compute.googleapis.com,notebooks.googleapis.com storage.googleapis.com aiplatform.googleapis.com)\n7. \n8.\n\n Make sure that you have the following role or roles on the project:\n\n roles/aiplatform.user, roles/storage.admin\n\n #### Check for the roles\n\n 1.\n In the Google Cloud console, go to the **IAM** page.\n\n [Go to IAM](https://console.cloud.google.com/projectselector/iam-admin/iam?supportedpurview=project)\n 2. Select the project.\n 3.\n In the **Principal** column, find all rows that identify you or a group that\n you're included in. To learn which groups you're included in, contact your\n administrator.\n\n 4. For all rows that specify or include you, check the **Role** column to see whether the list of roles includes the required roles.\n\n #### Grant the roles\n\n 1.\n In the Google Cloud console, go to the **IAM** page.\n\n [Go to IAM](https://console.cloud.google.com/projectselector/iam-admin/iam?supportedpurview=project)\n 2. Select the project.\n 3. Click person_add **Grant access**.\n 4.\n In the **New principals** field, enter your user identifier.\n\n This is typically the email address for a Google Account.\n\n 5. In the **Select a role** list, select a role.\n 6. To grant additional roles, click add **Add\n another role** and add each additional role.\n 7. Click **Save**.\n9. The Vertex AI User (`roles/aiplatform.user`) IAM role provides access to use all resources in Vertex AI. The [Storage Admin](/storage/docs/access-control/iam-roles) (`roles/storage.admin`) role lets you store the document's training dataset in Cloud Storage.\n\n\u003cbr /\u003e\n\nWhat's next\n-----------\n\nFollow the [next page of this tutorial](/vertex-ai/docs/tutorials/tabular-automl/dataset-train) to\ncreate a tabular dataset and train a classification model."]]