Stay organized with collections
Save and categorize content based on your preferences.
The Vertex AI Model Registry is a central repository where you can manage
the lifecycle of your ML models. From the Model Registry,
you have an overview of your models so you can better organize, track,
and train new versions. When you have a model version you would like to deploy,
you can assign it to an endpoint directly from the registry,
or using aliases, deploy models to an endpoint.
The Vertex AI Model Registry supports custom models and all
AutoML data types - tabular, image, and video. The
Model Registry
can also support BigQuery ML models. If you have models trained in
BigQuery ML, you can register them with the
Model Registry without needing to export them from
BigQuery ML or import them into the Model Registry.
From the model version details page you can evaluate, deploy to an endpoint,
set up batch inference, and view specific model details. The Vertex AI Model Registry
provides a straightforward and streamlined interface to manage and deploy your
best models to production.
Common workflow
There are many valid workflows for working in the Model Registry.
To get started, you might want to follow these guidelines to understand what you can
do in the Model Registry and at what stage in your model-training journey.
Import models to the Model Registry.
Create new models, assign a model version the default alias, ready for production.
Add other aliases, or labels to help you manage and organize your models and model versions.
Deploy your models to an endpoint for online inference.
Run batch inference, and start your model evaluation pipeline.
View your model details and view performance metrics from the model details page.
To learn more about how to integrate your BigQuery ML models with
Vertex AI, see the
BigQuery ML documentation.
Search and discover models using Dataplex Universal Catalog
Dataplex Universal Catalog is a platform for storing, managing, and accessing your
metadata. Dataplex Universal Catalog provides a way to search
for your Vertex AI models across projects and regions.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Hard to understand","hardToUnderstand","thumb-down"],["Incorrect information or sample code","incorrectInformationOrSampleCode","thumb-down"],["Missing the information/samples I need","missingTheInformationSamplesINeed","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2025-08-28 UTC."],[],[],null,["# Introduction to Vertex AI Model Registry\n\n| To see an example of getting started with Vertex AI Model Registry,\n| run the \"Get started with Vertex AI Model Registry\" notebook in one of the following\n| environments:\n|\n| [Open in Colab](https://colab.research.google.com/github/GoogleCloudPlatform/vertex-ai-samples/blob/main/notebooks/official/model_registry/get_started_with_model_registry.ipynb)\n|\n|\n| \\|\n|\n| [Open in Colab Enterprise](https://console.cloud.google.com/vertex-ai/colab/import/https%3A%2F%2Fraw.githubusercontent.com%2FGoogleCloudPlatform%2Fvertex-ai-samples%2Fmain%2Fnotebooks%2Fofficial%2Fmodel_registry%2Fget_started_with_model_registry.ipynb)\n|\n|\n| \\|\n|\n| [Open\n| in Vertex AI Workbench](https://console.cloud.google.com/vertex-ai/workbench/deploy-notebook?download_url=https%3A%2F%2Fraw.githubusercontent.com%2FGoogleCloudPlatform%2Fvertex-ai-samples%2Fmain%2Fnotebooks%2Fofficial%2Fmodel_registry%2Fget_started_with_model_registry.ipynb)\n|\n|\n| \\|\n|\n| [View on GitHub](https://github.com/GoogleCloudPlatform/vertex-ai-samples/blob/main/notebooks/official/model_registry/get_started_with_model_registry.ipynb)\n\nThe Vertex AI Model Registry is a central repository where you can manage\nthe lifecycle of your ML models. From the Model Registry,\nyou have an overview of your models so you can better organize, track,\nand train new versions. When you have a model version you would like to deploy,\nyou can assign it to an endpoint directly from the registry,\nor using aliases, deploy models to an endpoint.\n\nThe Vertex AI Model Registry supports custom models and all\nAutoML data types - tabular, image, and video. The\nModel Registry\ncan also support BigQuery ML models. If you have models trained in\nBigQuery ML, you can register them with the\nModel Registry without needing to export them from\nBigQuery ML or import them into the Model Registry.\n\nFrom the model version details page you can evaluate, deploy to an endpoint,\nset up batch inference, and view specific model details. The Vertex AI Model Registry\nprovides a straightforward and streamlined interface to manage and deploy your\nbest models to production.\n\nCommon workflow\n---------------\n\nThere are many valid workflows for working in the Model Registry.\nTo get started, you might want to follow these guidelines to understand what you can\ndo in the Model Registry and at what stage in your model-training journey.\n\n- Import models to the Model Registry.\n- Create new models, assign a model version the default alias, ready for production.\n- Add other aliases, or labels to help you manage and organize your models and model versions.\n- Deploy your models to an endpoint for online inference.\n- Run batch inference, and start your model evaluation pipeline.\n- View your model details and view performance metrics from the model details page.\n\nTo learn more about how to integrate your BigQuery ML models with\nVertex AI, see the\n[BigQuery ML documentation.](/bigquery-ml/docs/managing-models-vertex)\n\nSearch and discover models using Dataplex Universal Catalog\n-----------------------------------------------------------\n\nDataplex Universal Catalog is a platform for storing, managing, and accessing your\nmetadata. Dataplex Universal Catalog provides a way to search\nfor your Vertex AI models across projects and regions.\n\nFor more information, see [About data catalog management in\nDataplex Universal Catalog](/dataplex/docs/catalog-overview).\n\nWhat's next\n-----------\n\nTo get started using Vertex AI Model Registry, see:\n\n- [Import models to Vertex AI](/vertex-ai/docs/model-registry/import-model)\n- [Model versioning with Model Registry](/vertex-ai/docs/model-registry/versioning)\n- [How to use model version aliases](/vertex-ai/docs/model-registry/model-alias)\n- [BigQuery ML and Model Registry](/vertex-ai/docs/model-registry/model-registry-bqml)\n- [Copy a model in Vertex AI Model Registry](/vertex-ai/docs/model-registry/copy-model)"]]