Schedules automatic OS updates of the instance. This enables Debian's
unattended
upgrade service and only applies to VM-based images.
install-unattended-upgrades
true: Turns on automatic OS updates.
false (default): Turns off automatic OS updates.
Custom Jupyter user
Specifies the name of the default Jupyter user. This setting
determines the name of the folder for your notebooks. For example,
instead of the default /home/jupyter/ directory, you
can change the directory to /home/CUSTOM_NAME.
This metadata key doesn't affect access to the instance.
jupyter-user
A string. The default value is jupyter.
File downloading
Lets you download files from JupyterLab.
notebook-disable-downloads
true: Turns off file downloading.
false (default): Enables file downloading.
Root access
Enables root access.
notebook-disable-root
true: Turns off root access.
false (default): Enables root access.
Terminal access
Enables terminal access.
notebook-disable-terminal
true: Turns off terminal access.
false (default): Enables terminal access.
Scheduled upgrades
Schedules automatic upgrades of the instance.
notebook-upgrade-schedule
The weekly or monthly schedule that you set, in
unix-cron
format, for example, 00 19 * * MON means weekly on
Monday, at 1900 hours Greenwich Mean Time (GMT).
This feature is off by default.
Post-startup script
Runs a custom script after startup.
post-startup-script
The URI of a post-startup script in Cloud Storage, for example:
gs://bucket/hello.sh. This feature is off by default.
Post-startup script behavior
Defines when and how the post-startup script runs.
post-startup-script-behavior
run_once (default): Runs the post-startup script
once after instance creation or upgrade.
run_every_start: Runs the post-startup script
after every start.
download_and_run_every_start: Redownloads the
post-startup script from its source then runs the script after
every start.
Some of the metadata keys are predefined by Compute Engine. For more
information, see
Predefined metadata
keys.
Protected metadata keys
Some metadata keys are reserved for system use only. If you assign
values to these metadata keys, the new values will be overwritten by the
system values.
Reserved metadata keys include and are not limited to:
data-disk-uri
enable-oslogin
framework
notebooks-api
notebooks-api-version
nvidia-driver-gcs-path
proxy-url
restriction
shutdown-script
title
version
Create an instance with specific metadata
You can create a Vertex AI Workbench instance with specific metadata
by using the Google Cloud console, the Google Cloud CLI,
Terraform, or the Notebooks API.
Console
When you create a Vertex AI Workbench instance, you can add
metadata in the Environment section of Advanced options.
gcloud
When you create a Vertex AI Workbench instance, you can add
metadata by using the following command:
Use the instances.create
method with metadata values to manage the corresponding features.
Update an instance's metadata
You can update the metadata of a Vertex AI Workbench instance
by using the Google Cloud console, the Google Cloud CLI,
Terraform, or the Notebooks API.
Console
To update the metadata of a Vertex AI Workbench instance,
do the following:
In the Google Cloud console, go to the Instances page.
Use the instances.patch
method with the metadata value set to an empty string and
gce_setup.metadata in the updateMask to remove the
corresponding feature.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Hard to understand","hardToUnderstand","thumb-down"],["Incorrect information or sample code","incorrectInformationOrSampleCode","thumb-down"],["Missing the information/samples I need","missingTheInformationSamplesINeed","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2025-08-29 UTC."],[],[],null,["# Manage features through metadata\n================================\n\nThis page describes how to manage some Vertex AI Workbench instance features\nby modifying the instance's metadata key-value pairs.\n\nMetadata keys\n-------------\n\nFor information about features and their respective metadata keys,\nsee the following table.\n\nMetadata managed by Compute Engine\n----------------------------------\n\nSome of the metadata keys are predefined by Compute Engine. For more\ninformation, see\n[Predefined metadata\nkeys](/compute/docs/metadata/predefined-metadata-keys).\n\nProtected metadata keys\n-----------------------\n\nSome metadata keys are reserved for system use only. If you assign\nvalues to these metadata keys, the new values will be overwritten by the\nsystem values.\n\nReserved metadata keys include and are not limited to:\n\n- `data-disk-uri`\n- `enable-oslogin`\n- `framework`\n- `notebooks-api`\n- `notebooks-api-version`\n- `nvidia-driver-gcs-path`\n- `proxy-url`\n- `restriction`\n- `shutdown-script`\n- `title`\n- `version`\n\nCreate an instance with specific metadata\n-----------------------------------------\n\nYou can create a Vertex AI Workbench instance with specific metadata\nby using the Google Cloud console, the Google Cloud CLI,\nTerraform, or the Notebooks API. \n\n### Console\n\nWhen you create a Vertex AI Workbench instance, you can add\nmetadata in the **Environment** section of **Advanced options**.\n\n### gcloud\n\nWhen you create a Vertex AI Workbench instance, you can add\nmetadata by using the following command: \n\n```bash\ngcloud workbench instances create INSTANCE_NAME --metadata=KEY=VALUE\n```\n\n### Terraform\n\nTo add metadata, create the resource with metadata key-value pairs.\n\n\u003cbr /\u003e\n\nTo learn how to apply or remove a Terraform configuration, see\n[Basic Terraform commands](/docs/terraform/basic-commands).\n\n\u003cbr /\u003e\n\n resource \"google_workbench_instance\" \"default\" {\n name = \"workbench-instance-example\"\n location = \"us-central1-a\"\n\n gce_setup {\n machine_type = \"n1-standard-1\"\n vm_image {\n project = \"cloud-notebooks-managed\"\n family = \"workbench-instances\"\n }\n metadata = {\n key = \"value\"\n }\n }\n }\n\n### Notebooks API\n\nUse the [`instances.create`](/vertex-ai/docs/workbench/reference/rest/v2/projects.locations.instances/create)\nmethod with metadata values to manage the corresponding features.\n\nUpdate an instance's metadata\n-----------------------------\n\nYou can update the metadata of a Vertex AI Workbench instance\nby using the Google Cloud console, the Google Cloud CLI,\nTerraform, or the Notebooks API. \n\n### Console\n\nTo update the metadata of a Vertex AI Workbench instance,\ndo the following:\n\n1. In the Google Cloud console, go to the **Instances** page.\n\n [Go to Instances](https://console.cloud.google.com/vertex-ai/workbench/instances)\n2. In the list of instances, click the name of the instance that you want\n to update.\n\n3. On the **Instance details** page, click **Software and security**.\n\n4. In the **Metadata** section, update the metadata key-value pairs that\n you want to change.\n\n5. Click **Submit**.\n\n### gcloud\n\nYou can update the metadata on a Vertex AI Workbench instance\nby using the following command: \n\n```bash\ngcloud workbench instances update INSTANCE_NAME --metadata=KEY=VALUE\n```\n\n### Terraform\n\nYou can change the metadata key-value pairs to manage\nthe corresponding features on Vertex AI Workbench instances.\n\n\u003cbr /\u003e\n\nTo learn how to apply or remove a Terraform configuration, see\n[Basic Terraform commands](/docs/terraform/basic-commands).\n\n\u003cbr /\u003e\n\n resource \"google_workbench_instance\" \"default\" {\n name = \"workbench-instance-example\"\n location = \"us-central1-a\"\n\n gce_setup {\n machine_type = \"n1-standard-1\"\n vm_image {\n project = \"cloud-notebooks-managed\"\n family = \"workbench-instances\"\n }\n metadata = {\n key = \"updated_value\"\n }\n }\n }\n\n### Notebooks API\n\nUse the [`instances.patch`](/vertex-ai/docs/workbench/reference/rest/v2/projects.locations.instances/patch)\nmethod with metadata values and `gce_setup.metadata` in the `updateMask`\nto manage the corresponding features.\n\nRemove metadata from an instance\n--------------------------------\n\nYou can remove metadata from a Vertex AI Workbench instance\nby using the Google Cloud console, the Google Cloud CLI,\nTerraform, or the Notebooks API. \n\n### Console\n\nTo remove metadata from a Vertex AI Workbench instance,\ndo the following:\n\n1. In the Google Cloud console, go to the **Instances** page.\n\n [Go to Instances](https://console.cloud.google.com/vertex-ai/workbench/instances)\n2. In the list of instances, click the name of the instance that you want\n to modify.\n\n3. On the **Instance details** page, click **Software and security**.\n\n4. In the **Metadata** section, to the right of a key-value pair that\n you want to delete, click\n delete **Delete**.\n\n5. Click **Submit**.\n\n### gcloud\n\nYou can remove metadata from a Vertex AI Workbench instance\nby using the following command: \n\n```bash\ngcloud workbench instances update INSTANCE_NAME --metadata=KEY\n```\n\n### Terraform\n\nYou can remove metadata key-value pairs to manage the\ncorresponding features of a Vertex AI Workbench instance.\n\n\u003cbr /\u003e\n\nTo learn how to apply or remove a Terraform configuration, see\n[Basic Terraform commands](/docs/terraform/basic-commands).\n\n\u003cbr /\u003e\n\n resource \"google_workbench_instance\" \"default\" {\n name = \"workbench-instance-example\"\n location = \"us-central1-a\"\n\n gce_setup {\n machine_type = \"n1-standard-1\"\n vm_image {\n project = \"cloud-notebooks-managed\"\n family = \"workbench-instances\"\n }\n metadata = {\n }\n }\n }\n\n### Notebooks API\n\nUse the [`instances.patch`](/vertex-ai/docs/workbench/reference/rest/v2/projects.locations.instances/patch)\nmethod with the metadata value set to an empty string and\n`gce_setup.metadata` in the `updateMask` to remove the\ncorresponding feature."]]