Prasyarat: Anda harus mengetahui cara mengembangkan program menggunakan Ray open source.
Ray on Vertex AI SDK untuk Python yang digunakan di sini adalah versi Vertex AI SDK untuk Python yang menyertakan fungsi Ray Client, konektor Ray BigQuery, pengelolaan cluster Ray di Vertex AI, dan prediksi di Vertex AI.
Jika Anda menggunakan Ray on Vertex AI di Google Cloud konsol, notebook
Colab Enterprise
akan memandu Anda melalui proses penginstalan Vertex AI SDK untuk Python
setelah Anda membuat cluster Ray.
Jika Anda menggunakan Ray on Vertex AI di Vertex AI Workbench atau lingkungan Python interaktif lainnya, instal Vertex AI SDK untuk Python:
# The latest image in the Ray cluster includes Ray 2.47
# The latest supported Python version is Python 3.11.
$ pip install google-cloud-aiplatform[ray]
Setelah Anda menginstal SDK, mulai ulang kernel sebelum Anda mengimpor paket.
Opsional: Jika Anda berencana membaca dari BigQuery, buat set data BigQuery baru atau gunakan set data yang ada. Untuk melakukannya, lihat membuat set data BigQuery baru.
(Opsional) Untuk mengurangi risiko pemindahan data yang tidak sah dari Vertex AI, aktifkan Kontrol Layanan VPC dan tentukan jaringan VPC saat Anda membuat cluster. Untuk mengetahui informasi selengkapnya, lihat Kontrol Layanan VPC dengan Vertex AI.
Jika mengaktifkan Kontrol Layanan VPC, Anda tidak dapat menjangkau resource di luar perimeter, seperti file dalam bucket Cloud Storage.
(Opsional) Untuk menggunakan image container kustom, hosting image tersebut di Artifact Registry. Image kustom memungkinkan Anda menambahkan dependensi Python yang tidak disertakan dengan image container bawaan. Untuk membuat image kustom, lihat Mengemas software Anda di dokumentasi Docker.
(Opsional) Jika Anda menentukan jaringan VPC saat membuat cluster Ray di Vertex AI, sebaiknya gunakan jaringan VPC mode otomatis di project Anda. Jaringan VPC mode kustom dan beberapa jaringan VPC dalam project yang sama tidak didukung dan dapat menyebabkan pembuatan cluster gagal.
Mengamankan cluster Anda
Ikuti praktik terbaik dan panduan Ray, termasuk menjalankan kode tepercaya di jaringan tepercaya, untuk mengamankan beban kerja Ray Anda.
Deployment ray.io di instance cloud Anda termasuk dalam model
tanggung jawab bersama.
[[["Mudah dipahami","easyToUnderstand","thumb-up"],["Memecahkan masalah saya","solvedMyProblem","thumb-up"],["Lainnya","otherUp","thumb-up"]],[["Sulit dipahami","hardToUnderstand","thumb-down"],["Informasi atau kode contoh salah","incorrectInformationOrSampleCode","thumb-down"],["Informasi/contoh yang saya butuhkan tidak ada","missingTheInformationSamplesINeed","thumb-down"],["Masalah terjemahan","translationIssue","thumb-down"],["Lainnya","otherDown","thumb-down"]],["Terakhir diperbarui pada 2025-09-02 UTC."],[],[],null,["# Set up for Ray on Vertex AI\n\n| To see an example of getting started with Ray on Vertex AI cluster management,\n| run the \"Ray on Vertex AI cluster management\" notebook in one of the following\n| environments:\n|\n| [Open in Colab](https://colab.research.google.com/github/GoogleCloudPlatform/vertex-ai-samples/blob/main/notebooks/official/ray_on_vertex_ai/ray_cluster_management.ipynb)\n|\n|\n| \\|\n|\n| [Open in Colab Enterprise](https://console.cloud.google.com/vertex-ai/colab/import/https%3A%2F%2Fraw.githubusercontent.com%2FGoogleCloudPlatform%2Fvertex-ai-samples%2Fmain%2Fnotebooks%2Fofficial%2Fray_on_vertex_ai%2Fray_cluster_management.ipynb)\n|\n|\n| \\|\n|\n| [Open\n| in Vertex AI Workbench](https://console.cloud.google.com/vertex-ai/workbench/deploy-notebook?download_url=https%3A%2F%2Fraw.githubusercontent.com%2FGoogleCloudPlatform%2Fvertex-ai-samples%2Fmain%2Fnotebooks%2Fofficial%2Fray_on_vertex_ai%2Fray_cluster_management.ipynb)\n|\n|\n| \\|\n|\n| [View on GitHub](https://github.com/GoogleCloudPlatform/vertex-ai-samples/blob/main/notebooks/official/ray_on_vertex_ai/ray_cluster_management.ipynb)\n\nBefore you begin with Ray on Vertex AI, follow these steps to set up your\nGoogle project and :\n\n1. Set up billing for your project, [install the\n gcloud CLI](/sdk/docs/install), and enable the Vertex AI API. To do this,\n follow the steps at [Set up a project and a development\n environment](/vertex-ai/docs/start/cloud-environment).\n\n [Enable the Vertex AI API](https://console.cloud.google.com/apis/enableflow?apiid=aiplatform.googleapis.com)\n2. Prerequisite: You must know how to develop programs using [open source\n Ray](https://docs.ray.io/en/latest/ray-overview/index.html).\n\n3. The Ray on Vertex AI SDK for Python used here is a version of the Vertex AI SDK for Python\n that includes the functionality of the [Ray\n Client](https://docs.ray.io/en/latest/cluster/running-applications/job-submission/ray-client.html),\n Ray BigQuery connector, Ray\n cluster management on Vertex AI, and predictions on Vertex AI.\n\n - If you use Ray on Vertex AI in the Google Cloud console, a\n Colab Enterprise\n notebook guides you through the Vertex AI SDK for Python installation\n process after you [create a Ray cluster](/vertex-ai/docs/open-source/ray-on-vertex-ai/create-cluster).\n\n - If you use Ray on Vertex AI in the Vertex AI Workbench or other interactive Python environment, install the Vertex AI SDK for Python:\n\n ```\n # The latest image in the Ray cluster includes Ray 2.47\n # The latest supported Python version is Python 3.11.\n $ pip install google-cloud-aiplatform[ray]\n ```\n\n After you install the SDK, restart the kernel before you import packages.\n | **Note:** If you use a Vertex AI Workbench notebook as the client environment and use the [Deep Learning VM](/deep-learning-vm/docs/introduction) as the machine image, Ray and the Vertex AI SDK for Python are pre-installed in the Python, TensorFlow Enterprise\n4. Optional: If you plan to read from BigQuery, create a\n new BigQuery dataset or use an existing\n dataset. To do this, see [create a new BigQuery dataset](/bigquery/docs/datasets).\n\n | **Note:** If you run code on your Ray cluster on Vertex AI that interacts with Google services like BigQuery, the [Vertex AI Custom Code Service\n | Agent](/vertex-ai/docs/general/access-control#service-agents) authenticates.\n5. (Optional) To mitigate the risk of data exfiltration from\n Vertex AI, enable VPC Service Controls and specify\n a VPC network when you create a cluster. For more\n information, see [VPC Service Controls with\n Vertex AI](/vertex-ai/docs/general/vpc-service-controls).\n\n If you enable VPC Service Controls, you can't reach resources\n outside the perimeter, such as files in a Cloud Storage bucket.\n | **Note:** The best setup for Ray on Vertex AI is one auto mode VPC network per project. If you use a custom mode VPC network or use multiple VPC networks to create clusters in the same project, you might encounter issues.\n6. (Optional) To use a custom container image, host it on\n [Artifact Registry](/artifact-registry/docs/overview). A custom image lets you add Python dependencies that aren't included with the prebuilt container images. To build custom images, see Packing your software in the [Docker documentation](https://docs.docker.com/build/building/packaging/).\n\n7. (Optional) If you specify a VPC network when creating a Ray cluster on\n Vertex AI, it's highly recommended that you use an auto mode VPC network\n in your project. Custom mode VPC networks and multiple VPC networks in the\n same project aren't supported and may cause cluster creation to fail.\n\nSecure your clusters\n--------------------\n\nFollow [Ray best practices and guidelines](https://docs.ray.io/en/latest/ray-security/index.html#best-practices), including\nrunning trusted code on trusted networks, to secure your Ray workloads.\nDeployment of ray.io in your cloud instances falls under the model of\n[shared responsibility](/vertex-ai/docs/shared-responsibility).\n\nFor more information about Google Cloud best practices, see the\n[GCP-2024-020 security bulletin](/support/bulletins#gcp-2024-020).\n\nSupported locations\n-------------------\n\nThe [Feature availability](/vertex-ai/docs/general/locations#available-regions) table lists the available locations for Ray on Vertex AI for Custom\nmodel training.\n\nWhat's next\n-----------\n\n- [Create a Ray cluster on Vertex AI](/vertex-ai/docs/open-source/ray-on-vertex-ai/create-cluster)"]]