Modell in Vertex AI bereitstellen, um Inferenzen zu erhalten

Nachdem Sie ein Modell in einem Ray-Cluster in Vertex AI trainiert haben, können Sie es mithilfe des folgenden Verfahrens für Online-Inferenzanfragen bereitstellen:

Bevor Sie beginnen, sollten Sie den Überblick über Ray in Vertex AI lesen und alle erforderlichen Tools einrichten.

Bei den Schritten in diesem Abschnitt wird davon ausgegangen, dass Sie das Ray on Vertex AI SDK in einer interaktiven Python-Umgebung verwenden.

Onlineinferenz in Vertex AI und Ray-Inferenz im Vergleich

Funktion Vertex AI-Onlineinferenz (empfohlen) Ray Inference (Ray Serve)
Skalierbarkeit Autoscaling auf Basis von Traffic (hochskalierbar, auch für LLM-Modelle) Hohe Skalierbarkeit mit verteilten Back-Ends und benutzerdefiniertem Ressourcenmanagement
Infrastrukturverwaltung Vollständig verwaltet von Google Cloud, weniger Betriebsaufwand Erfordert mehr manuelle Einrichtung und Verwaltung in Ihrer Infrastruktur oder Ihrem Kubernetes-Cluster
API/Unterstützte Funktionen REST- und gRPC-APIs, Online- und Batchinferenzen, Erklärungsfunktionen, Batching, Caching, Streaming REST- und gRPC-APIs, Echtzeit- und Batchinferenz, Modellkomposition, Batching, Caching, Streaming
Modellformat Unterstützt verschiedene Frameworks wie TensorFlow, PyTorch, scikit-learn und XGBoost mit vordefinierten Containern oder benutzerdefinierten Containern Unterstützt verschiedene Frameworks wie TensorFlow, PyTorch und scikit-learn.
Nutzerfreundlichkeit Einfacher einzurichten und zu verwalten, in andere Vertex AI-Funktionen eingebunden Flexibler und anpassbarer, erfordert aber fundiertere Kenntnisse von Ray
Kosten Die Kosten hängen von den Maschinentypen, den Beschleunigern und der Anzahl der Replikate ab. Die Kosten hängen von Ihrer Infrastruktur ab.
Spezielle Funktionen Modellüberwachung, A/B-Tests, Traffic-Aufteilung, Integration von Vertex AI Model Registry und Vertex AI Pipelines Erweiterte Modellkomposition, Ensemble-Modelle, benutzerdefinierte Inferenzlogik, Integration in die Ray-Umgebung

Ray on Vertex AI-Client importieren und initialisieren

Wenn Sie bereits mit Ihrem Ray on Vertex AI-Cluster verbunden sind, starten Sie den Kernel neu und führen Sie den folgenden Code aus. Die Variable runtime_env ist beim Herstellen der Verbindung erforderlich, um Online-Inferenzbefehle auszuführen.

import ray
import vertexai

# The CLUSTER_RESOURCE_NAME is the one returned from vertex_ray.create_ray_cluster.
address = 'vertex_ray://{}'.format(CLUSTER_RESOURCE_NAME)

# Initialize Vertex AI to retrieve projects for downstream operations.
vertexai.init(staging_bucket=BUCKET_URI)

# Shutdown cluster and reconnect with required dependencies in the runtime_env.
ray.shutdown()

Wobei:

  • CLUSTER_RESOURCE_NAME: Der vollständige Ressourcenname für den Ray in Vertex AI-Cluster, der in Ihrem Projekt eindeutig sein muss.

  • BUCKET_URI ist der Cloud Storage-Bucket, in dem die Modellartefakte gespeichert werden.

Modell trainieren und in Vertex AI Model Registry exportieren

Exportieren Sie das Vertex AI-Modell aus dem Ray-Prüfpunkt und laden Sie das Modell in die Vertex AI Model Registry hoch.

TensorFlow

import numpy as np
from ray.air import session, CheckpointConfig, ScalingConfig
from ray.air.config import RunConfig
from ray.train import SyncConfig
from ray.train.tensorflow import TensorflowCheckpoint, TensorflowTrainer
from ray import train
import tensorflow as tf

from vertex_ray.predict import tensorflow

# Required dependencies at runtime
runtime_env = {
  "pip": [
      "ray==2.42.0", # pin the Ray version to prevent it from being overwritten
      "tensorflow",
      "IPython",
      "numpy",
  ],
}

# Initialize  Ray on Vertex AI client for remote cluster connection
ray.init(address=address, runtime_env=runtime_env)

# Define a TensorFlow model.

def create_model():
  model = tf.keras.Sequential([tf.keras.layers.Dense(1, activation="linear", input_shape=(4,))])
  model.compile(optimizer="Adam", loss="mean_squared_error", metrics=["mse"])
  return model

def train_func(config):
  n = 100
  # Create a fake dataset
  # data   : X - dim = (n, 4)
  # target : Y - dim = (n, 1)
  X = np.random.normal(0, 1, size=(n, 4))
  Y = np.random.uniform(0, 1, size=(n, 1))

  strategy = tf.distribute.experimental.MultiWorkerMirroredStrategy()
  with strategy.scope():
      model = create_model()
      print(model)

  for epoch in range(config["num_epochs"]):
      model.fit(X, Y, batch_size=20)
      tf.saved_model.save(model, "temp/my_model")
      checkpoint = TensorflowCheckpoint.from_saved_model("temp/my_model")
      train.report({}, checkpoint=checkpoint)

trainer = TensorflowTrainer(
  train_func,
  train_loop_config={"num_epochs": 5},
  scaling_config=ScalingConfig(num_workers=1),
  run_config=RunConfig(
      storage_path=f'{BUCKET_URI}/ray_results/tensorflow',
      checkpoint_config=CheckpointConfig(
          num_to_keep=1  # Keep all checkpoints.
      ),
      sync_config=SyncConfig(
          sync_artifacts=True,
      ),
  ),
)

# Train the model.
result = trainer.fit()

# Register the trained model to Vertex AI Model Registry.
vertex_model = tensorflow.register_tensorflow(
  result.checkpoint,
)

sklearn

from vertex_ray.predict import sklearn
from ray.train.sklearn import SklearnCheckpoint

vertex_model = sklearn.register_sklearn(
  result.checkpoint,
)

XGBoost

from vertex_ray.predict import xgboost
from ray.train.xgboost import XGBoostTrainer

# Initialize  Ray on Vertex AI client for remote cluster connection
ray.init(address=address, runtime_env=runtime_env)

# Define a XGBoost model.
train_dataset = ray.data.from_pandas(
pd.DataFrame([{"x": x, "y": x + 1} for x in range(32)]))

run_config = RunConfig(
storage_path=f'{BUCKET_URI}/ray_results/xgboost',
checkpoint_config=CheckpointConfig(
    num_to_keep=1  # Keep all checkpoints.
),
sync_config=SyncConfig(sync_artifacts=True),
)

trainer = XGBoostTrainer(
label_column="y",
params={"objective": "reg:squarederror"},
scaling_config=ScalingConfig(num_workers=3),
datasets={"train": train_dataset},
run_config=run_config,
)
# Train the model.
result = trainer.fit()

# Register the trained model to Vertex AI Model Registry.
vertex_model = xgboost.register_xgboost(
result.checkpoint,
)

PyTorch

  • Konvertieren Sie Ray-Prüfpunkte in ein Modell.

  • Erstellen Sie model.mar.

  • Erstellen Sie LocalModel mit model.mar.

  • Laden Sie in Vertex AI Model Registry hoch.

Modell für Onlineinferenzen bereitstellen

Stellen Sie das Modell für den Online-Endpunkt bereit. Weitere Informationen finden Sie unter Modell auf einem Endpunkt bereitstellen.

DEPLOYED_NAME = model.display_name + "-endpoint"
TRAFFIC_SPLIT = {"0": 100}
MACHINE_TYPE = "n1-standard-4"

endpoint = vertex_model.deploy(
    deployed_model_display_name=DEPLOYED_NAME,
    traffic_split=TRAFFIC_SPLIT,
    machine_type=MACHINE_TYPE,
)

Dabei gilt:

  • (Optional) DEPLOYED_NAME: Der Anzeigename des bereitgestellten Modells. Wenn beim Erstellen des Modells keine Angabe erfolgt, wird die display_name des Modells verwendet.

  • (Optional) TRAFFIC_SPLIT: Eine Zuordnung der ID eines bereitgestellten Modells zum Prozentsatz des Traffics dieses Endpunkts, der an das bereitgestellte Modell weitergeleitet werden soll. Wenn die ID eines bereitgestellten Modells nicht in dieser Übersicht aufgeführt ist, werden keine Anfragen an das Modell gesendet. Die Werte für den Traffic-Prozentsatz müssen zusammen 100 % ergeben. Die Karte muss leer sein, wenn der Endpunkt derzeit keinen Traffic akzeptieren soll. Der Schlüssel für das bereitzustellende Modell ist "0". Beispiel: {"0": 100}

  • (Optional) MACHINE_TYPE: Geben Sie die Rechenressourcen an.

Inferenzanfrage stellen

Senden Sie eine Inferenzanfrage an den Endpunkt. Weitere Informationen finden Sie unter Onlineinferenzen aus einem benutzerdefinierten trainierten Modell abrufen.

pred_request = [
    [ 1.7076793 , 0.23412449, 0.95170785, -0.10901471],
    [-0.81881499, 0.43874669, -0.25108584, 1.75536031]
]

endpoint.predict(pred_request)

Die Ausgabe sollte in etwa so aussehen:

Prediction(predictions=[0.7891440987586975, 0.5843208432197571],
 deployed_model_id='3829557218101952512',
 model_version_id='1',
 model_resource_name='projects/123456789/locations/us-central1/models/123456789101112',
 explanations=None)

Nächste Schritte