Questa pagina mostra come creare un set di dati Vertex AI dai tuoi dati immagine per poter iniziare ad addestrare i modelli di rilevamento degli oggetti. Puoi creare un dataset utilizzando la console Google Cloud o l'API Vertex AI.
Creare un set di dati vuoto e importare o associare i dati
Google Cloud console
Segui le istruzioni riportate di seguito per creare un set di dati vuoto e importare o associare i tuoi dati.
- Nella console Google Cloud , nella sezione Vertex AI, vai alla pagina Set di dati.
- Fai clic su Crea per aprire la pagina dei dettagli di creazione del set di dati.
- Modifica il campo Nome set di dati per creare un nome visualizzato descrittivo per il set di dati.
- Seleziona la scheda Immagine.
- Seleziona il rilevamento degli oggetti come obiettivo del modello.
- Seleziona una regione dall'elenco a discesa Regione.
- Fai clic su Crea per creare il set di dati vuoto e passare alla pagina di importazione dei dati.
- Scegli una delle seguenti opzioni dalla sezione Seleziona un metodo di importazione:
Caricare dati dal computer
- Nella sezione Seleziona un metodo di importazione, scegli di caricare i dati dal computer.
- Fai clic su Seleziona file e scegli tutti i file locali da caricare in un bucket Cloud Storage.
- Nella sezione Seleziona un percorso Cloud Storage, fai clic su Sfoglia per scegliere una posizione del bucket Cloud Storage in cui caricare i dati.
Carica un file di importazione dal computer
- Fai clic su Carica un file di importazione dal tuo computer.
- Fai clic su Seleziona file e scegli il file di importazione locale da caricare in un bucket Cloud Storage.
- Nella sezione Seleziona un percorso Cloud Storage, fai clic su Sfoglia per scegliere un percorso del bucket Cloud Storage in cui caricare il file.
Seleziona un file di importazione da Cloud Storage
- Fai clic su Seleziona un file di importazione da Cloud Storage.
- Nella sezione Seleziona un percorso Cloud Storage, fai clic su Sfoglia per scegliere il file di importazione in Cloud Storage.
- Fai clic su Continua.
L'importazione dei dati può richiedere diverse ore, a seconda delle dimensioni dei dati. Puoi chiudere questa scheda e tornarci in un secondo momento. Riceverai un'email quando i dati saranno importati.
API
Per creare un modello di machine learning, devi prima disporre di una raccolta rappresentativa di dati da utilizzare per l'addestramento. Dopo aver importato i dati, puoi apportare modifiche e avviare l'addestramento del modello.
Crea un set di dati
Utilizza gli esempi riportati di seguito per creare un set di dati per i tuoi dati.
REST
Prima di utilizzare i dati della richiesta, apporta le seguenti sostituzioni:
-
LOCATION: la regione in cui verrà archiviato il set di dati. Deve essere una regione che supporta le risorse del set di dati. Ad esempio,
us-central1
. Consulta l'elenco delle località disponibili. - PROJECT: il tuo ID progetto
- DATASET_NAME: il nome del set di dati.
Metodo HTTP e URL:
POST https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/datasets
Corpo JSON della richiesta:
{ "display_name": "DATASET_NAME", "metadata_schema_uri": "gs://google-cloud-aiplatform/schema/dataset/metadata/image_1.0.0.yaml" }
Per inviare la richiesta, scegli una di queste opzioni:
curl
Salva il corpo della richiesta in un file denominato request.json
,
quindi esegui il comando seguente:
curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/datasets"
PowerShell
Salva il corpo della richiesta in un file denominato request.json
,
quindi esegui il comando seguente:
$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }
Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/datasets" | Select-Object -Expand Content
Dovresti vedere un output simile al seguente. Puoi utilizzare OPERATION_ID nella risposta per ottenere lo stato dell'operazione.
{ "name": "projects/PROJECT_NUMBER/locations/LOCATION/datasets/DATASET_ID/operations/OPERATION_ID", "metadata": { "@type": "type.googleapis.com/google.cloud.aiplatform.v1.CreateDatasetOperationMetadata", "genericMetadata": { "createTime": "2020-07-07T21:27:35.964882Z", "updateTime": "2020-07-07T21:27:35.964882Z" } } }
Terraform
L'esempio seguente utilizza la risorsa Terraform google_vertex_ai_dataset
per creare un set di dati di immagini denominato image-dataset
.
Per scoprire come applicare o rimuovere una configurazione Terraform, consulta Comandi Terraform di base.
Java
Prima di provare questo esempio, segui le istruzioni di configurazione di Java nella guida rapida di Vertex AI per l'utilizzo delle librerie client. Per ulteriori informazioni, consulta la documentazione di riferimento dell'API Vertex AI Java.
Per autenticarti in Vertex AI, configura le Credenziali predefinite dell'applicazione. Per ulteriori informazioni, consulta Configura l'autenticazione per un ambiente di sviluppo locale.
Node.js
Prima di provare questo esempio, segui le istruzioni di configurazione di Node.js nella guida rapida di Vertex AI per l'utilizzo delle librerie client. Per ulteriori informazioni, consulta la documentazione di riferimento dell'API Vertex AI Node.js.
Per autenticarti in Vertex AI, configura le Credenziali predefinite dell'applicazione. Per ulteriori informazioni, consulta Configura l'autenticazione per un ambiente di sviluppo locale.
Python
Per scoprire come installare o aggiornare l'SDK Vertex AI Python, consulta Installare l'SDK Vertex AI Python. Per saperne di più, consulta la documentazione di riferimento dell'API Python.
L'esempio seguente utilizza l'SDK Vertex AI per Python per creare un set di dati e importare i dati. Se esegui questo codice campione, puoi saltare la sezione Importa dati di questa guida.
Questo particolare esempio importa i dati per la classificazione con etichetta singola. Se il tuo modello ha un obiettivo diverso, devi modificare il codice.
Importa dati
Dopo aver creato un set di dati vuoto, puoi importare i dati. Se hai utilizzato l'SDK Vertex AI per Python per creare il set di dati, potresti aver già importato i dati durante la creazione del set di dati. In caso affermativo, puoi saltare questa sezione.
REST
Prima di utilizzare i dati della richiesta, apporta le seguenti sostituzioni:
-
LOCATION: la regione in cui si trova il set di dati. Ad esempio,
us-central1
. - PROJECT_ID: il tuo ID progetto
- DATASET_ID: ID del set di dati.
- IMPORT_FILE_URI: percorso del file CSV o JSON Lines in Cloud Storage che elenca gli elementi di dati archiviati in Cloud Storage da utilizzare per l'addestramento del modello; per i formati e le limitazioni dei file di importazione, consulta Preparare i dati delle immagini.
Metodo HTTP e URL:
POST https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/datasets/DATASET_ID:import
Corpo JSON della richiesta:
{ "import_configs": [ { "gcs_source": { "uris": "IMPORT_FILE_URI" }, "import_schema_uri" : "gs://google-cloud-aiplatform/schema/dataset/ioformat/image_bounding_box_io_format_1.0.0.yaml" } ] }
Per inviare la richiesta, scegli una di queste opzioni:
curl
Salva il corpo della richiesta in un file denominato request.json
,
quindi esegui il comando seguente:
curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/datasets/DATASET_ID:import"
PowerShell
Salva il corpo della richiesta in un file denominato request.json
,
quindi esegui il comando seguente:
$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }
Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/datasets/DATASET_ID:import" | Select-Object -Expand Content
Dovresti vedere un output simile al seguente. Puoi utilizzare OPERATION_ID nella risposta per ottenere lo stato dell'operazione.
{ "name": "projects/PROJECT_NUMBER/locations/LOCATION/datasets/DATASET_ID/operations/OPERATION_ID", "metadata": { "@type": "type.googleapis.com/google.cloud.aiplatform.v1.ImportDataOperationMetadata", "genericMetadata": { "createTime": "2020-07-08T20:32:02.543801Z", "updateTime": "2020-07-08T20:32:02.543801Z" } } }
Java
Prima di provare questo esempio, segui le istruzioni di configurazione di Java nella guida rapida di Vertex AI per l'utilizzo delle librerie client. Per ulteriori informazioni, consulta la documentazione di riferimento dell'API Vertex AI Java.
Per autenticarti in Vertex AI, configura le Credenziali predefinite dell'applicazione. Per ulteriori informazioni, consulta Configura l'autenticazione per un ambiente di sviluppo locale.
Node.js
Prima di provare questo esempio, segui le istruzioni di configurazione di Node.js nella guida rapida di Vertex AI per l'utilizzo delle librerie client. Per ulteriori informazioni, consulta la documentazione di riferimento dell'API Vertex AI Node.js.
Per autenticarti in Vertex AI, configura le Credenziali predefinite dell'applicazione. Per ulteriori informazioni, consulta Configura l'autenticazione per un ambiente di sviluppo locale.
Python
Per scoprire come installare o aggiornare l'SDK Vertex AI Python, consulta Installare l'SDK Vertex AI Python. Per saperne di più, consulta la documentazione di riferimento dell'API Python.
Recupero dello stato dell'operazione
Alcune richieste avviano operazioni a lunga esecuzione che richiedono tempo per essere completate. Queste richieste restituiscono un nome dell'operazione, che puoi utilizzare per visualizzare lo stato o annullare l'operazione. Vertex AI fornisce metodi helper per effettuare chiamate alle operazioni di lunga durata. Per ulteriori informazioni, consulta Utilizzo di operazioni a lunga esecuzione.