Scopri come gestire e trovare le funzionalità.
Creare una funzionalità
Crea una singola funzionalità per un tipo di entità esistente. Per creare più elementi in una singola richiesta, consulta la sezione Creare elementi in batch.
UI web
- Nella sezione Vertex AI della console Google Cloud, vai alla pagina Funzionalità.
Vai alla paginaFunzionalità
- Seleziona una regione dall'elenco a discesa Regione.
- Nella tabella delle funzionalità, visualizza la colonna Tipo di entità e fai clic sul tipo di entità a cui aggiungere le funzionalità.
- Fai clic su Aggiungi funzionalità per aprire il riquadro Aggiungi funzionalità.
- Specifica un nome, un tipo di valore e, facoltativamente, una descrizione per la caratteristica.
- Per attivare il monitoraggio del valore delle funzionalità (Anteprima), in Monitoraggio funzionalità, seleziona Sostituisci configurazione monitoraggio tipo di entità e poi inserisci il numero di giorni tra uno snapshot e l'altro. Questa configurazione sostituisce qualsiasi configurazione di monitoraggio esistente o futura sul tipo di entità della funzionalità. Per ulteriori informazioni, consulta Monitoraggio dei valori delle funzionalità.
- Per aggiungere altre funzionalità, fai clic su Aggiungi un'altra funzionalità.
- Fai clic su Salva.
REST
Per creare una funzionalità per un tipo di entità esistente, invia una richiesta POST utilizzando il metodo featurestores.entityTypes.features.create.
Prima di utilizzare i dati della richiesta, apporta le seguenti sostituzioni:
- LOCATION_ID: regione in cui si trova l'archivio di funzionalità, ad esempio
us-central1
. - PROJECT_ID: il tuo ID progetto.
- FEATURESTORE_ID: l'ID dell'archivio di funzionalità.
- ENTITY_TYPE_ID: ID del tipo di entità.
- FEATURE_ID: un ID per la funzionalità.
- DESCRIPTION: descrizione della funzionalità.
- VALUE_TYPE: il tipo di valore della funzionalità.
Metodo HTTP e URL:
POST https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID?featureId=FEATURE_ID
Corpo JSON della richiesta:
{ "description": "DESCRIPTION", "valueType": "VALUE_TYPE" }
Per inviare la richiesta, scegli una delle seguenti opzioni:
curl
Salva il corpo della richiesta in un file denominato request.json
,
quindi esegui il comando seguente:
curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID?featureId=FEATURE_ID"
PowerShell
Salva il corpo della richiesta in un file denominato request.json
,
quindi esegui il comando seguente:
$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }
Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID?featureId=FEATURE_ID" | Select-Object -Expand Content
Dovresti vedere un output simile al seguente. Puoi utilizzare OPERATION_ID nella risposta per ottenere lo stato dell'operazione.
{ "name": "projects/PROJECT_NUMBER/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/operations/OPERATION_ID", "metadata": { "@type": "type.googleapis.com/google.cloud.aiplatform.v1.CreateFeatureOperationMetadata", "genericMetadata": { "createTime": "2021-03-02T00:04:13.039166Z", "updateTime": "2021-03-02T00:04:13.039166Z" } } }
Python
Per scoprire come installare o aggiornare l'SDK Vertex AI per Python, consulta Installare l'SDK Vertex AI per Python. Per saperne di più, consulta la documentazione di riferimento dell'API Python.
Java
Prima di provare questo esempio, segui le istruzioni di configurazione Java riportate nella guida rapida all'utilizzo delle librerie client di Vertex AI. Per ulteriori informazioni, consulta la documentazione di riferimento dell'API Java di Vertex AI.
Per autenticarti a Vertex AI, configura le Credenziali predefinite dell'applicazione. Per maggiori informazioni, consulta Configurare l'autenticazione per un ambiente di sviluppo locale.
Node.js
Prima di provare questo esempio, segui le istruzioni di configurazione Node.js riportate nella guida rapida all'utilizzo delle librerie client di Vertex AI. Per ulteriori informazioni, consulta la documentazione di riferimento dell'API Node.js di Vertex AI.
Per autenticarti a Vertex AI, configura le Credenziali predefinite dell'applicazione. Per maggiori informazioni, consulta Configurare l'autenticazione per un ambiente di sviluppo locale.
Creare funzionalità in batch
Creare più elementi contemporaneamente per un tipo esistente. Per le richieste di creazione collettiva,
Vertex AI Feature Store (legacy) crea più funzionalità contemporaneamente, il che è più rapido per la creazione di un gran numero di funzionalità rispetto al metodofeaturestores.entityTypes.features.create
.
UI web
Consulta la sezione Creare una funzionalità.
REST
Per creare una o più funzionalità per un tipo di entità esistente, invia una richiesta POST utilizzando il metodo featurestores.entityTypes.features.batchCreate, come mostrato nell'esempio seguente.
Prima di utilizzare i dati della richiesta, apporta le seguenti sostituzioni:
- LOCATION_ID: regione in cui si trova l'archivio di funzionalità, ad esempio
us-central1
. - PROJECT_ID: il tuo ID progetto.
- FEATURESTORE_ID: l'ID dell'archivio di funzionalità.
- ENTITY_TYPE_ID: ID del tipo di entità.
- PARENT: il nome della risorsa del tipo di entità in cui creare gli elementi.
Formato richiesto:
projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID
- FEATURE_ID: un ID per la funzionalità.
- DESCRIPTION: descrizione della funzionalità.
- VALUE_TYPE: il tipo di valore della funzionalità.
- DURATION: (facoltativo) la durata dell'intervallo tra gli istantanei in secondi. Il valore deve terminare con una "s".
Metodo HTTP e URL:
POST https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID/features:batchCreate
Corpo JSON della richiesta:
{ "requests": [ { "parent" : "PARENT_1", "feature": { "description": "DESCRIPTION_1", "valueType": "VALUE_TYPE_1", "monitoringConfig": { "snapshotAnalysis": { "monitoringInterval": "DURATION" } } }, "featureId": "FEATURE_ID_1" }, { "parent" : "PARENT_2", "feature": { "description": "DESCRIPTION_2", "valueType": "VALUE_TYPE_2", "monitoringConfig": { "snapshotAnalysis": { "monitoringInterval": "DURATION" } } }, "featureId": "FEATURE_ID_2" } ] }
Per inviare la richiesta, scegli una delle seguenti opzioni:
curl
Salva il corpo della richiesta in un file denominato request.json
,
quindi esegui il comando seguente:
curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID/features:batchCreate"
PowerShell
Salva il corpo della richiesta in un file denominato request.json
,
quindi esegui il comando seguente:
$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }
Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID/features:batchCreate" | Select-Object -Expand Content
Dovresti vedere un output simile al seguente. Puoi utilizzare OPERATION_ID nella risposta per ottenere lo stato dell'operazione.
{ "name": "projects/PROJECT_NUMBER/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/operations/OPERATION_ID", "metadata": { "@type": "type.googleapis.com/google.cloud.aiplatform.v1.BatchCreateFeaturesOperationMetadata", "genericMetadata": { "createTime": "2021-03-02T00:04:13.039166Z", "updateTime": "2021-03-02T00:04:13.039166Z" } } }
Python
Per scoprire come installare o aggiornare l'SDK Vertex AI per Python, consulta Installare l'SDK Vertex AI per Python. Per saperne di più, consulta la documentazione di riferimento dell'API Python.
Java
Prima di provare questo esempio, segui le istruzioni di configurazione Java riportate nella guida rapida all'utilizzo delle librerie client di Vertex AI. Per ulteriori informazioni, consulta la documentazione di riferimento dell'API Java di Vertex AI.
Per autenticarti a Vertex AI, configura le Credenziali predefinite dell'applicazione. Per maggiori informazioni, consulta Configurare l'autenticazione per un ambiente di sviluppo locale.
Node.js
Prima di provare questo esempio, segui le istruzioni di configurazione Node.js riportate nella guida rapida all'utilizzo delle librerie client di Vertex AI. Per ulteriori informazioni, consulta la documentazione di riferimento dell'API Node.js di Vertex AI.
Per autenticarti a Vertex AI, configura le Credenziali predefinite dell'applicazione. Per maggiori informazioni, consulta Configurare l'autenticazione per un ambiente di sviluppo locale.
Elenco funzionalità
Elenca tutte le funzionalità in una determinata località. Per cercare elementi in tutti i tipi di entità e in tutti i feature store in una determinata località, consulta il metodo Ricerca di elementi.
UI web
- Nella sezione Vertex AI della console Google Cloud, vai alla pagina Funzionalità.
Vai alla paginaFunzionalità
- Seleziona una regione dall'elenco a discesa Regione.
- Nella tabella delle funzionalità, visualizza la colonna Funzionalità per vedere le funzionalità del progetto per la regione selezionata.
REST
Per elencare tutte le funzionalità per un singolo tipo di entità, invia una richiesta GET utilizzando il metodo featurestores.entityTypes.features.list.
Prima di utilizzare i dati della richiesta, apporta le seguenti sostituzioni:
- LOCATION_ID: regione in cui si trova l'archivio di funzionalità, ad esempio
us-central1
. - PROJECT_ID: il tuo ID progetto.
- FEATURESTORE_ID: l'ID dell'archivio di funzionalità.
- ENTITY_TYPE_ID: ID del tipo di entità.
Metodo HTTP e URL:
GET https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID/features
Per inviare la richiesta, scegli una delle seguenti opzioni:
curl
Esegui questo comando:
curl -X GET \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
"https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID/features"
PowerShell
Esegui questo comando:
$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }
Invoke-WebRequest `
-Method GET `
-Headers $headers `
-Uri "https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID/features" | Select-Object -Expand Content
Dovresti ricevere una risposta JSON simile alla seguente:
{ "features": [ { "name": "projects/PROJECT_NUMBER/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID/features/FEATURE_ID_1", "description": "DESCRIPTION", "valueType": "VALUE_TYPE", "createTime": "2021-03-01T22:41:20.626644Z", "updateTime": "2021-03-01T22:41:20.626644Z", "labels": { "environment": "testing" }, "etag": "AMEw9yP0qJeLao6P3fl9cKEGY4ie5-SanQaiN7c_Ca4QOa0u7AxwO6i75Vbp0Cr51MSf" }, { "name": "projects/PROJECT_NUMBER/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID/features/FEATURE_ID_2", "description": "DESCRIPTION", "valueType": "VALUE_TYPE", "createTime": "2021-02-25T01:27:00.544230Z", "updateTime": "2021-02-25T01:27:00.544230Z", "labels": { "environment": "testing" }, "etag": "AMEw9yMdrLZ7Waty0ane-DkHq4kcsIVC-piqJq7n6A_Y-BjNzPY4rNlokDHNyUqC7edw" }, { "name": "projects/PROJECT_NUMBER/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID/features/FEATURE_ID_3", "description": "DESCRIPTION", "valueType": "VALUE_TYPE", "createTime": "2021-03-01T22:41:20.628493Z", "updateTime": "2021-03-01T22:41:20.628493Z", "labels": { "environment": "testing" }, "etag": "AMEw9yM-sAkv-u-jzkUOToaAVovK7GKbrubd9DbmAonik-ojTWG8-hfSRYt6jHKRTQ35" } ] }
Java
Prima di provare questo esempio, segui le istruzioni di configurazione Java riportate nella guida rapida all'utilizzo delle librerie client di Vertex AI. Per ulteriori informazioni, consulta la documentazione di riferimento dell'API Java di Vertex AI.
Per autenticarti a Vertex AI, configura le Credenziali predefinite dell'applicazione. Per maggiori informazioni, consulta Configurare l'autenticazione per un ambiente di sviluppo locale.
Node.js
Prima di provare questo esempio, segui le istruzioni di configurazione Node.js riportate nella guida rapida all'utilizzo delle librerie client di Vertex AI. Per ulteriori informazioni, consulta la documentazione di riferimento dell'API Node.js di Vertex AI.
Per autenticarti a Vertex AI, configura le Credenziali predefinite dell'applicazione. Per maggiori informazioni, consulta Configurare l'autenticazione per un ambiente di sviluppo locale.
Linguaggi aggiuntivi
Per scoprire come installare e utilizzare l'SDK Vertex AI per Python, consulta Utilizzare l'SDK Vertex AI per Python. Per ulteriori informazioni, consulta la documentazione di riferimento dell'API Vertex AI SDK for Python.
Cercare le funzionalità
Cerca elementi in base a una o più delle relative proprietà, ad esempio ID elemento, ID tipo di entità o descrizione dell'elemento. Vertex AI Feature Store (legacy) esegue ricerche in tutti i feature store e i tipi di entità in una determinata posizione. Puoi anche limitare i risultati filtrando in base a negozi di funzionalità, tipi di valore ed etichette specifici.
Per elencare tutte le funzionalità, consulta Funzionalità della scheda.
UI web
- Nella sezione Vertex AI della console Google Cloud, vai alla pagina Funzionalità.
Vai alla paginaFunzionalità
- Seleziona una regione dall'elenco a discesa Regione.
- Fai clic sul campo Filtro della tabella delle funzionalità.
- Seleziona una proprietà in base alla quale filtrare, ad esempio Elemento, che restituisce gli elementi che contengono una stringa corrispondente in qualsiasi punto del loro ID.
- Digita un valore per il filtro e premi Invio. Vertex AI Feature Store (legacy) restituisce i risultati nella tabella delle funzionalità.
- Per aggiungere altri filtri, fai di nuovo clic sul campo Filtro.
REST
Per cercare elementi, invia una richiesta GET utilizzando il metodo
featurestores.searchFeatures. Il seguente esempio utilizza più parametri di ricerca, scritti come
featureId:test AND valueType=STRING
. La query restituisce le funzionalità
che contengono test
nel loro ID e i cui valori sono di tipo
STRING
.
Prima di utilizzare i dati della richiesta, apporta le seguenti sostituzioni:
- LOCATION_ID: regione in cui si trova l'archivio di funzionalità, ad esempio
us-central1
. - PROJECT_ID: il tuo ID progetto.
Metodo HTTP e URL:
GET https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores:searchFeatures?query="featureId:test%20AND%20valueType=STRING"
Per inviare la richiesta, scegli una delle seguenti opzioni:
curl
Esegui questo comando:
curl -X GET \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
"https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores:searchFeatures?query="featureId:test%20AND%20valueType=STRING""
PowerShell
Esegui questo comando:
$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }
Invoke-WebRequest `
-Method GET `
-Headers $headers `
-Uri "https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores:searchFeatures?query="featureId:test%20AND%20valueType=STRING"" | Select-Object -Expand Content
Dovresti ricevere una risposta JSON simile alla seguente:
{ "features": [ { "name": "projects/PROJECT_NUMBER/locations/LOCATION_IDfeature-delete.html/featurestores/featurestore_demo/entityTypes/testing/features/test1", "description": "featurestore test1", "createTime": "2021-02-26T18:16:09.528185Z", "updateTime": "2021-02-26T18:16:09.528185Z", "labels": { "environment": "testing" } } ] }
Java
Prima di provare questo esempio, segui le istruzioni di configurazione Java riportate nella guida rapida all'utilizzo delle librerie client di Vertex AI. Per ulteriori informazioni, consulta la documentazione di riferimento dell'API Java di Vertex AI.
Per autenticarti a Vertex AI, configura le Credenziali predefinite dell'applicazione. Per maggiori informazioni, consulta Configurare l'autenticazione per un ambiente di sviluppo locale.
Node.js
Prima di provare questo esempio, segui le istruzioni di configurazione Node.js riportate nella guida rapida all'utilizzo delle librerie client di Vertex AI. Per ulteriori informazioni, consulta la documentazione di riferimento dell'API Node.js di Vertex AI.
Per autenticarti a Vertex AI, configura le Credenziali predefinite dell'applicazione. Per maggiori informazioni, consulta Configurare l'autenticazione per un ambiente di sviluppo locale.
Linguaggi aggiuntivi
Per scoprire come installare e utilizzare l'SDK Vertex AI per Python, consulta Utilizzare l'SDK Vertex AI per Python. Per ulteriori informazioni, consulta la documentazione di riferimento dell'API Vertex AI SDK for Python.
Visualizza dettagli delle funzionalità
Visualizza i dettagli di una funzionalità, ad esempio il tipo di valore o la descrizione. Se utilizzi la console Google Cloud e hai attivato il monitoraggio delle funzionalità, puoi anche visualizzare la distribuzione dei valori delle funzionalità nel tempo.
UI web
- Nella sezione Vertex AI della console Google Cloud, vai alla pagina Funzionalità.
Vai alla paginaFunzionalità
- Seleziona una regione dall'elenco a discesa Regione.
- Nella tabella delle funzionalità, visualizza la colonna Funzionalità per trovare la funzionalità di cui vuoi visualizzare i dettagli.
- Fai clic sul nome di una funzionalità per visualizzarne i dettagli.
- Per visualizzarne le metriche, fai clic su Metriche. Vertex AI Feature Store (legacy) fornisce le metriche di distribuzione delle funzionalità per la funzionalità.
REST
Per ottenere i dettagli di una funzionalità, invia una richiesta GET utilizzando il metodo featurestores.entityTypes.features.get.
Prima di utilizzare i dati della richiesta, apporta le seguenti sostituzioni:
- LOCATION_ID: regione in cui si trova l'archivio di funzionalità, ad esempio
us-central1
. - PROJECT_ID: il tuo ID progetto.
- FEATURESTORE_ID: l'ID dell'archivio di funzionalità.
- ENTITY_TYPE_ID: ID del tipo di entità.
- FEATURE_ID: l'ID della funzionalità.
Metodo HTTP e URL:
GET https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID/features/FEATURE_ID
Per inviare la richiesta, scegli una delle seguenti opzioni:
curl
Esegui questo comando:
curl -X GET \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
"https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID/features/FEATURE_ID"
PowerShell
Esegui questo comando:
$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }
Invoke-WebRequest `
-Method GET `
-Headers $headers `
-Uri "https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID/features/FEATURE_ID" | Select-Object -Expand Content
Dovresti ricevere una risposta JSON simile alla seguente:
{ "name": "projects/PROJECT_NUMBER/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID/features/FEATURE_ID", "description": "DESCRIPTION", "valueType": "VALUE_TYPE", "createTime": "2021-03-01T22:41:20.628493Z", "updateTime": "2021-03-01T22:41:20.628493Z", "labels": { "environment": "testing" }, "etag": "AMEw9yOZbdYKHTyjV22ziZR1vUX3nWOi0o2XU3-OADahSdfZ8Apklk_qPruhF-o1dOSD", "monitoringConfig": {} }
Java
Prima di provare questo esempio, segui le istruzioni di configurazione Java riportate nella guida rapida all'utilizzo delle librerie client di Vertex AI. Per ulteriori informazioni, consulta la documentazione di riferimento dell'API Java di Vertex AI.
Per autenticarti a Vertex AI, configura le Credenziali predefinite dell'applicazione. Per maggiori informazioni, consulta Configurare l'autenticazione per un ambiente di sviluppo locale.
Node.js
Prima di provare questo esempio, segui le istruzioni di configurazione Node.js riportate nella guida rapida all'utilizzo delle librerie client di Vertex AI. Per ulteriori informazioni, consulta la documentazione di riferimento dell'API Node.js di Vertex AI.
Per autenticarti a Vertex AI, configura le Credenziali predefinite dell'applicazione. Per maggiori informazioni, consulta Configurare l'autenticazione per un ambiente di sviluppo locale.
Linguaggi aggiuntivi
Per scoprire come installare e utilizzare l'SDK Vertex AI per Python, consulta Utilizzare l'SDK Vertex AI per Python. Per ulteriori informazioni, consulta la documentazione di riferimento dell'API Vertex AI SDK for Python.
Eliminare una funzionalità
Elimina una funzionalità e tutti i relativi valori.
UI web
- Nella sezione Vertex AI della console Google Cloud, vai alla pagina Funzionalità.
Vai alla paginaFunzionalità
- Seleziona una regione dall'elenco a discesa Regione.
- Nella tabella delle funzionalità, visualizza la colonna Funzionalità e trova la funzionalità da eliminare.
- Fai clic sul nome della funzionalità.
- Nella barra delle azioni, fai clic su Elimina.
- Fai clic su Conferma per eliminare la funzionalità e i relativi valori.
REST
Per eliminare una funzionalità, invia una richiesta DELETE utilizzando il metodo featurestores.entityTypes.features.delete.
Prima di utilizzare i dati della richiesta, apporta le seguenti sostituzioni:
- LOCATION_ID: regione in cui si trova l'archivio di funzionalità, ad esempio
us-central1
. - PROJECT_ID: il tuo ID progetto.
- FEATURESTORE_ID: l'ID dell'archivio di funzionalità.
- ENTITY_TYPE_ID: ID del tipo di entità.
- FEATURE_ID: l'ID della funzionalità.
Metodo HTTP e URL:
DELETE https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID/features/FEATURE_ID
Per inviare la richiesta, scegli una delle seguenti opzioni:
curl
Esegui questo comando:
curl -X DELETE \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
"https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID/features/FEATURE_ID"
PowerShell
Esegui questo comando:
$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }
Invoke-WebRequest `
-Method DELETE `
-Headers $headers `
-Uri "https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID/features/FEATURE_ID" | Select-Object -Expand Content
Dovresti ricevere una risposta JSON simile alla seguente:
{ "name": "projects/PROJECT_NUMBER/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/operations/OPERATION_ID", "metadata": { "@type": "type.googleapis.com/google.cloud.aiplatform.v1.DeleteOperationMetadata", "genericMetadata": { "createTime": "2021-02-26T17:32:56.008325Z", "updateTime": "2021-02-26T17:32:56.008325Z" } }, "done": true, "response": { "@type": "type.googleapis.com/google.protobuf.Empty" } }
Java
Prima di provare questo esempio, segui le istruzioni di configurazione Java riportate nella guida rapida all'utilizzo delle librerie client di Vertex AI. Per ulteriori informazioni, consulta la documentazione di riferimento dell'API Java di Vertex AI.
Per autenticarti a Vertex AI, configura le Credenziali predefinite dell'applicazione. Per maggiori informazioni, consulta Configurare l'autenticazione per un ambiente di sviluppo locale.
Node.js
Prima di provare questo esempio, segui le istruzioni di configurazione Node.js riportate nella guida rapida all'utilizzo delle librerie client di Vertex AI. Per ulteriori informazioni, consulta la documentazione di riferimento dell'API Node.js di Vertex AI.
Per autenticarti a Vertex AI, configura le Credenziali predefinite dell'applicazione. Per maggiori informazioni, consulta Configurare l'autenticazione per un ambiente di sviluppo locale.
Linguaggi aggiuntivi
Per scoprire come installare e utilizzare l'SDK Vertex AI per Python, consulta Utilizzare l'SDK Vertex AI per Python. Per ulteriori informazioni, consulta la documentazione di riferimento dell'API Vertex AI SDK for Python.
Passaggi successivi
- Scopri come importare in batch i valori delle funzionalità.
- Scopri come monitorare i valori delle caratteristiche importati nel tempo.
- Scopri come pubblicare le funzionalità tramite la pubblicazione online o la pubblicazione in batch.
- Risolvi i problemi comuni di Vertex AI Feature Store (legacy).