O tráfego sul entre a Apigee e um back-end de destino com um endereço IP público usa o Cloud NAT
para converter o endereço IP particular da instância da Apigee em um endereço IP público. Se o back-end de destino exigir a listagem de permissões de IP, reserve e ative IPs NAT estáticos para o tráfego de saída.
Neste tópico, descrevemos como calcular o número de IPs NAT estáticos necessários para dar suporte ao tráfego previsto.
Antes de começar
Se você optar por usar a alocação de IP NAT estático para dar suporte à listagem de permissões, será necessário calcular
o número de IPs estáticos necessários para dar suporte ao tráfego previsto. Para esse cálculo, você precisará das seguintes informações:
Tempo máximo por transação: tempo máximo, em segundos, de uma transação, do início da solicitação até o final da resposta.
Máximo de transações por segundo (TPS): é o número máximo de transações por segundo que a instância da Apigee pode suportar.
TPS máximo para um único back-end exclusivo: é o número máximo de transações por segundo que qualquer back-end único pode suportar.
Número máximo de ambientes: o número máximo de ambientes nesta instância da Apigee.
Calcular o número de IPs estáticos necessários
Você pode usar as fórmulas abaixo para calcular o número mínimo de IPs NAT que precisam ser atribuídos estaticamente:
Calcule o número máximo de portas de origem NAT necessárias por back-end como $ S $.
$$ S = \lceil (150 + T) \times B \rceil $$
Em que:
$ T $ é o tempo máximo por transação, em segundos.
$ B $ é o TPS máximo de qualquer back-end exclusivo e único.
$ \lceil \rceil $ é a função ceiling (mínimo número inteiro), o que significa arredondar para o próximo número inteiro
Calcule as portas mínimas usadas pelas instâncias da Apigee como $ N $.
$$ N = max(4096 \times E, \lceil {512 \over 75} \times R \rceil) + 6144 $$
Em que:
$ E $ é o número de ambientes da Apigee.
$ R $ é o TPS máximo da instância da Apigee.
$ \lceil \rceil $ é a função ceiling (mínimo número inteiro), o que significa arredondar para o próximo número inteiro
A função $ \mathit{max}() $ usa o máximo dos dois valores.
Utilize o número máximo de portas necessárias como $ P $.
$$ P = max(S, N) $$
Em que:
$ S $ é o número máximo de portas de origem NAT necessárias, conforme calculado na Etapa 1.
$ N $ é o número mínimo de portas usadas pela instância da Apigee, conforme calculado na Etapa 2.
A função $ \mathit{max}() $ usa o máximo dos dois valores.
Calcule o número de IPs NAT necessários como $ I $.
$$ I = \lceil P / 64512 \rceil $$
Em que:
$ P $ é o número máximo de portas necessárias, conforme calculado na Etapa 3.
$ \lceil \rceil $ é a função ceiling (mínimo número inteiro), o que significa arredondar para o próximo número inteiro
Examples
Exemplo 1
Neste exemplo, esperamos um máximo de 10.000 TPS em um ambiente. As transações são todas solicitações HTTP GET
e a duração da transação do 99° percentil é de 50 milissegundos (ms). Essas solicitações são atendidas de forma desigual por um pool de
servidores atrás de três back-ends de balanceador de carga, com um dos balanceadores de carga recebendo 5.000 TPS, outro 3.000 TPS e o último
balanceador de carga recebendo 2.000 TPS.
Para este exemplo, os valores de chave são os seguintes:
Tempo máximo por transação: 50 ms
TPS máximo para a instância da Apigee: 10.000
TPS máximo para um único back-end: 5.000
Número de ambientes da Apigee: 1
Usando as fórmulas descritas anteriormente, é possível calcular o número de IPs NAT necessários:
O número mínimo de IPs NAT necessários para oferecer suporte a no máximo 10.000 TPS de 50 ms cada (ou menos), com um IP de back-end único e par de portas compatível com um máximo de 5.000 TPS, é 12.
Exemplo 2
Neste exemplo, estimamos um máximo de 1.000 TPS em 20 ambientes da Apigee. A duração do 99° percentil dessas transações
é de 5 segundos. Essas solicitações serão atendidas por 8 back-ends de destino, e o tráfego será distribuído normalmente de maneira uniforme entre todos eles. Considerando
a manutenção e as interrupções, um único back-end nunca deve atender mais de 250 TPS.
Para este exemplo, os valores de chave são os seguintes:
Tempo máximo por transação: 5s
Número máximo de transações por segundo (TPS): 1.000
TPS máximo para um único back-end: 250
Número de ambientes da Apigee: 20
Usando as fórmulas descritas anteriormente, é possível calcular o número de IPs NAT necessários:
O número mínimo de IPs NAT necessários para oferecer suporte a no máximo 1.000 TPS de 5 segundos cada (ou menos),
com um único par de porta e IP de back-end compatível com um máximo de 250 TPS, é 2.
Exemplo 3
Neste exemplo, é necessário calcular o máximo de TPS possível com 2 IPs NAT para um único back-end de destino. O tempo máximo por transação é estimado em 100 ms.
Para este exemplo, os valores de chave são os seguintes:
Tempo máximo por transação: 100 ms
Número de IPs NAT: 2
Neste caso, é possível usar as fórmulas das etapas 4 e 1 para calcular o número máximo de portas de origem NAT fornecidas e o número de TPS que as portas de origem aceitam:
$$ 2 = \lceil P / 64512 \rceil $$
$$ 129024 = P $$
O número máximo de portas de origem NAT fornecidas é 129.024.
[[["Fácil de entender","easyToUnderstand","thumb-up"],["Meu problema foi resolvido","solvedMyProblem","thumb-up"],["Outro","otherUp","thumb-up"]],[["Difícil de entender","hardToUnderstand","thumb-down"],["Informações incorretas ou exemplo de código","incorrectInformationOrSampleCode","thumb-down"],["Não contém as informações/amostras de que eu preciso","missingTheInformationSamplesINeed","thumb-down"],["Problema na tradução","translationIssue","thumb-down"],["Outro","otherDown","thumb-down"]],["Última atualização 2025-08-18 UTC."],[[["\u003cp\u003eThis document explains how to calculate the minimum number of static NAT IPs needed for Apigee to support outbound traffic to target backends that require IP allow-listing.\u003c/p\u003e\n"],["\u003cp\u003eThe calculation requires knowing the maximum time per transaction, maximum transactions per second (TPS) for both the Apigee instance and a single backend, and the number of Apigee environments.\u003c/p\u003e\n"],["\u003cp\u003eThe provided formulas determine the maximum number of NAT source ports required, which is then used to find the minimum number of NAT IPs needed, using a "worst-case" scenario that does not consider connection reuse.\u003c/p\u003e\n"],["\u003cp\u003eExamples are included to demonstrate how to apply these formulas in scenarios with different transaction rates, durations, and backend configurations to calculate required static NAT IPs.\u003c/p\u003e\n"],["\u003cp\u003eThe document is applicable to Apigee and not to Apigee hybrid.\u003c/p\u003e\n"]]],[],null,["# Calculating static NAT IP requirements\n\n*This page\napplies to **Apigee** , but not to **Apigee hybrid**.*\n\n\n*View [Apigee Edge](https://docs.apigee.com/api-platform/get-started/what-apigee-edge) documentation.*\n\nSouthbound traffic between Apigee and a target backend with a public IP address uses [Cloud NAT](https://cloud.google.com/nat/docs/overview)\nto translate the private IP address of your Apigee instance into a public IP address. If your target backend requires IP allow-listing, you can reserve and activate static NAT IPs for egress traffic.\nThis topic describes how to calculate the minimum number of static NAT IPs required to support anticipated traffic.\n\nBefore you begin\n----------------\n\nIf you choose to use static NAT IP allocation to support allow-listing, you will need to calculate\nthe minimum number of static IPs required to support anticipated traffic. For this calculation, you will need the following information:\n\n- **Maximum time per transaction**: This is the maximum time, in seconds, that a transaction will take, from the start of the request until the end of the response.\n- **Maximum transactions per second (TPS)**: This is the maximum number of transactions per second the Apigee instance can possibly support.\n- **Maximum TPS for a single unique backend**: This is the maximum number of transactions per second that any single backend can possibly support.\n- **Maximum number of environments**: The maximum number of environments on this Apigee instance.\n\n| **Note**: The maximums detailed above are a part of capacity planning for NAT, and must include consideration of possible traffic spikes, TPS increases for backends due to a maintenance or outage, and future environment additions. It is recommended to add some buffer to the projected numbers in order to handle unforeseen traffic increases, and to redo the NAT calculations when projections change.\n\nCalculate the number of static IPs required\n-------------------------------------------\n\nYou can use the following formulas to calculate the minimum number of NAT IPs that need to be statically assigned:\n\n1. Calculate the maximum number of NAT source ports required per backend as $ S $. \n $$ S = \\\\lceil (150 + T) \\\\times B \\\\rceil $$\n\n Where:\n - $ T $ is the maximum time per transaction, in seconds.\n - $ B $ is the maximum TPS for any single unique backend.\n - $ \\\\lceil \\\\rceil $ is the ceiling (least integer) function, meaning round up to the next integer\n2. Calculate the minimum ports used by the Apigee instance as $ N $. \n $$ N = max(4096 \\\\times E, \\\\lceil {512 \\\\over 75} \\\\times R \\\\rceil) + 6144 $$\n\n Where:\n - $ E $ is the number of Apigee environments.\n - $ R $ is the maximum TPS for the Apigee instance.\n - $ \\\\lceil \\\\rceil $ is the ceiling (least integer) function, meaning round up to the next integer\n - The $ \\\\mathit{max}() $ function takes the maximum of the two values.\n3. Take the maximum number of ports required as $ P $. \n $$ P = max(S, N) $$\n\n Where:\n - $ S $ is the maximum number of NAT source ports required, as calculated in Step 1.\n - $ N $ is the minimum number of ports used by the Apigee instance, as calculated in Step 2.\n - The $ \\\\mathit{max}() $ function takes the maximum of the two values.\n4. Calculate the minimum number of NAT IPs required as $ I $. \n $$ I = \\\\lceil P / 64512 \\\\rceil $$\n\n Where:\n - $ P $ is the maximum number of ports required, calculated in Step 3.\n - $ \\\\lceil \\\\rceil $ is the ceiling (least integer) function, meaning round up to the next integer\n\n| **Note** : These formulas do not account for connection reuse, and instead calculate a \"worst-case\" scenario where no connections are reused. Actual connection reuse may vary. See [Connection Reuse](/apigee/docs/api-platform/security/nat-performance#connection-reuse) for the factors that contribute to an Apigee instance reusing an existing connection or opening a new one.\n\nExamples\n--------\n\n### Example 1\n\nIn this example, we expect a maximum of 10,000 TPS across 1 environment. The transactions are all `HTTP GET` requests\nand the 99th percentile transaction duration is 50 milliseconds (ms). These requests are unevenly served by a pool of\nservers behind 3 load balancer backends, with one of the load balancers taking 5,000 TPS, another taking 3,000 TPS, and the last\nload balancer taking 2,000 TPS.\n\nFor this example, the key values are as follows:\n\n- Maximum time per transaction: **50 ms**\n- Maximum TPS for the Apigee instance: **10,000**\n- Maximum TPS for a single backend: **5,000**\n- Number of Apigee environments: **1**\n\nUsing the formulas outlined earlier, we can calculate the number of NAT IPs required:\n\n1. $$ \\\\lceil (150 + 0.050) \\\\times 5000 \\\\rceil = \\\\lceil 150.050 \\\\times 5000 \\\\rceil = \\\\lceil 750250 \\\\rceil = 750250 $$\n\n The maximum number of NAT source ports required per backend, assuming no connection reuse, is **750,250**.\n 2. $$ max(4096 \\\\times 1, \\\\lceil {512 \\\\over 75} \\\\times 10000 \\\\rceil) + 6144 $$ \n $$ max(4096, \\\\lceil 6.827 \\\\times 10000 \\\\rceil) + 6144 $$ \n $$ max(4096, \\\\lceil 68270 \\\\rceil) + 6144 $$ \n $$ 68270 + 6144 = 74414 $$\n\n The minimum number of NAT source ports used by the Apigee runtime is **74,414**.\n3. $$ max(750250, 74414) = 750250 $$\n\n The maximum number of NAT source ports required per instance is **750,250**.\n4. $$ \\\\lceil 750250 / 64512 \\\\rceil = \\\\lceil 11.630 \\\\rceil = 12 $$\n\n The minimum number of NAT IPs required to support a maximum of 10,000 TPS of 50 ms each (or\n less), with a single backend IP and port pair supporting a maximum of 5,000 TPS, is\n **12**.\n\n### Example 2\n\nIn this example, we expect a maximum of 1,000 TPS across 20 Apigee environments. The\n99th percentile duration of these transactions is 5 seconds. These requests will be served by 8\ntarget backends, with traffic normally evenly distributed across all of them. With consideration\nfor maintenance and outages, a single backend is never expected to serve more than 250 TPS.\n\nFor this example, the key values are as follows:\n\n- Maximum time per transaction: **5s**\n- Maximum transactions per second (TPS): **1,000**\n- Maximum TPS for a single backend: **250**\n- Number of Apigee environments: **20**\n\nUsing the formulas outlined earlier, we can calculate the number of NAT IPs required:\n\n1. $$ \\\\lceil (150 + 5) \\\\times 250 \\\\rceil = \\\\lceil 155 \\\\times 250 \\\\rceil = \\\\lceil 38750 \\\\rceil = 38750 $$\n\n The maximum number of NAT source ports required per backend, assuming no connection reuse, is **38,750**.\n 2. $$ max(4096 \\\\times 20, \\\\lceil {512 \\\\over 75} \\\\times 1000 \\\\rceil) + 6144 $$ \n $$ max(81920, \\\\lceil 6.827 \\\\times 1000 \\\\rceil) + 6144 $$ \n $$ max(81920, \\\\lceil 6827 \\\\rceil) + 6144 $$ \n $$ 81920 + 6144 = 88064 $$\n\n The minimum number of NAT source ports used by the Apigee runtime is **88,064**.\n3. $$ max(38750, 88064) = 88064 $$\n\n The maximum number of NAT source ports required per instance is **88,064**.\n4. $$ \\\\lceil 88064 / 64512 \\\\rceil= \\\\lceil 1.365 \\\\rceil= 2 $$\n\n The minimum number of NAT IPs required to support a maximum of 1,000 TPS of 5 seconds each (or less),\n with a single backend IP and port pair supporting a maximum of 250 TPS, is **2**.\n\n### Example 3\n\nIn this example, we want to calculate the maximum TPS achievable with 2 NAT IPs to a single\ntarget backend. The maximum time per transaction is estimated to be 100 ms.\n\nFor this example, the key values are as follows:\n\n- **Maximum time per transaction**: 100ms\n- **Number of NAT IPs**: 2\n\nIn this case, we can use the formulas in Step 4 and Step 1 to calculate the maximum number of\nNAT source ports provided and the number of TPS those source ports can support:\n\n 1. $$ 2 = \\\\lceil P / 64512 \\\\rceil $$ \n $$ 129024 = P $$\n\n The maximum number of NAT source ports provided is **129,024**.\n 2. $$ 129024 = \\\\lceil (150 + 0.100) \\\\times B \\\\rceil $$ \n $$ 129024 = \\\\lceil 150.1 \\\\times B \\\\rceil $$ \n $$ \\\\lfloor 129024 / 150.1 \\\\rfloor = B $$ \n $$ \\\\lfloor 859.587 \\\\rfloor = B $$ \n $$ 859 = B $$\n\n The max TPS is **859** with 2 NAT IPs to a single backend, assuming no connection reuse."]]