Mit Sammlungen den Überblick behalten
Sie können Inhalte basierend auf Ihren Einstellungen speichern und kategorisieren.
Sie können beliebige nichtflüchtige Ressourcen mit dem Status RUNNING oder ERROR neu starten.
Durch den Neustart einer nichtflüchtigen Ressource können Sie Fehler beheben, die von der nichtflüchtigen Ressource nicht allein behoben werden können. Sie können auch eine nichtflüchtige Ressource neu starten, um manuell aktuellere Cluster abzurufen. Auf dieser Seite erfahren Sie, wie Sie eine nichtflüchtige Ressource mithilfe der Google Cloud Console und der REST API neu starten.
Erforderliche Rollen
Bitten Sie Ihren Administrator, Ihnen die Rolle Vertex AI Administrator (roles/aiplatform.admin) für Ihr Projekt zu gewähren, um die Berechtigung zum Neustarten einer nichtflüchtigen Ressource zu erhalten.
Weitere Informationen zum Zuweisen von Rollen finden Sie unter Zugriff auf Projekte, Ordner und Organisationen verwalten.
Diese vordefinierte Rolle enthält die Berechtigung aiplatform.persistentResources.update, die zum Neustart einer nichtflüchtigen Ressource erforderlich ist.
Wählen Sie einen der folgenden Tabs aus, um zu erfahren, wie Sie eine nichtflüchtige Ressource neu starten. Achten Sie darauf, dass in der nichtflüchtigen Ressource keine Trainingsjobs ausgeführt werden.
Der Neustart einer nichtflüchtigen Ressource ist ein lang andauernder Vorgang, während dem die nichtflüchtige Ressource nicht gelöscht werden kann. Der Vorgang enthält ein Feld progressMessage, das in einem Fehler-Fall einen Fehlerstatus enthält. Wenn der Vorgang "done: true" angibt, prüfen Sie den Status der nichtflüchtigen Ressource. Wenn die nichtflüchtige Ressource den Status RUNNING hat, war der Neustart erfolgreich und es kann Trainingsjobs ausgeführt werden.
Beschränkungen
Beim Neustart einer nichtflüchtigen Ressource gelten folgende Einschränkungen:
In einigen Fällen kann es vorkommen, dass beim Neustart einer nichtflüchtigen Ressource die Kapazitäten knapper Ressourcen aufgebraucht werden. Der vollständige Ressourcenerhalt ist nicht gesichert.
Ein Neustart ist in Ray on Vertex AI nicht verfügbar.
Nichtflüchtige Ressourcen mit automatisch skalierten Worker-Pools werden mit der minimalen Replikatanzahl neu gestartet.
[[["Leicht verständlich","easyToUnderstand","thumb-up"],["Mein Problem wurde gelöst","solvedMyProblem","thumb-up"],["Sonstiges","otherUp","thumb-up"]],[["Schwer verständlich","hardToUnderstand","thumb-down"],["Informationen oder Beispielcode falsch","incorrectInformationOrSampleCode","thumb-down"],["Benötigte Informationen/Beispiele nicht gefunden","missingTheInformationSamplesINeed","thumb-down"],["Problem mit der Übersetzung","translationIssue","thumb-down"],["Sonstiges","otherDown","thumb-down"]],["Zuletzt aktualisiert: 2025-08-07 (UTC)."],[],[],null,["# Reboot a persistent resource\n\nYou can reboot any persistent resource that's in the `RUNNING` or `ERROR` state. Rebooting a persistent resource lets you recover from errors that the persistent resource can't recover from on its own. You can also reboot a persistent resource to manually obtain more up-to-date clusters. This page shows you how to reboot a persistent resource by using the Google Cloud console and the REST API.\n\n\u003cbr /\u003e\n\nRequired roles\n--------------\n\n\nTo get the permission that\nyou need to reboot a persistent resource,\n\nask your administrator to grant you the\n\n\n[Vertex AI Administrator](/iam/docs/roles-permissions/aiplatform#aiplatform.admin) (`roles/aiplatform.admin`)\nIAM role on your project.\n\n\nFor more information about granting roles, see [Manage access to projects, folders, and organizations](/iam/docs/granting-changing-revoking-access).\n\n\nThis predefined role contains the\n` aiplatform.persistentResources.update`\npermission,\nwhich is required to\nreboot a persistent resource.\n\n\nYou might also be able to get\nthis permission\nwith [custom roles](/iam/docs/creating-custom-roles) or\nother [predefined roles](/iam/docs/roles-overview#predefined).\n\nReboot a persistent resource\n----------------------------\n\nSelect one of the following tabs for instructions on how to reboot a persistent\nresource. Make sure there's no training jobs running on the persistent resource. \n\n### Console\n\nTo reboot a persistent resource in the Google Cloud console, do the following:\n\n1. In the Google Cloud console, go to the **Persistent resources** page.\n\n [Go to Persistent resources](https://console.cloud.google.com/vertex-ai/training/persistent-resources)\n2. Next to the name of the persistent resource that you want to reboot, click\n the vertical ellipses (more_vert).\n\n3. Click **Reboot**.\n\n4. Click **Confirm**.\n\n\n### gcloud\n\n\nBefore using any of the command data below,\nmake the following replacements:\n\n- \u003cvar class=\"edit\" scope=\"PROJECT_ID\" translate=\"no\"\u003ePROJECT_ID\u003c/var\u003e: The Project ID of the persistent resource that you want to reboot.\n- \u003cvar class=\"edit\" scope=\"LOCATION\" translate=\"no\"\u003eLOCATION\u003c/var\u003e: The region of the persistent resource that you want to reboot.\n- \u003cvar class=\"edit\" scope=\"PERSISTENT_RESOURCE_ID\" translate=\"no\"\u003ePERSISTENT_RESOURCE_ID\u003c/var\u003e: The ID of the persistent resource that you want to reboot.\n\n\nExecute the\n\nfollowing\n\ncommand:\n\n#### Linux, macOS, or Cloud Shell\n\n**Note:** Ensure you have initialized the Google Cloud CLI with authentication and a project by running either [gcloud init](/sdk/gcloud/reference/init); or [gcloud auth login](/sdk/gcloud/reference/auth/login) and [gcloud config set project](/sdk/gcloud/reference/config/set). \n\n```bash\ngcloud ai persistent-resources reboot PERSISTENT_RESOURCE_ID \\\n --project=PROJECT_ID \\\n --region=LOCATION\n```\n\n#### Windows (PowerShell)\n\n**Note:** Ensure you have initialized the Google Cloud CLI with authentication and a project by running either [gcloud init](/sdk/gcloud/reference/init); or [gcloud auth login](/sdk/gcloud/reference/auth/login) and [gcloud config set project](/sdk/gcloud/reference/config/set). \n\n```bash\ngcloud ai persistent-resources reboot PERSISTENT_RESOURCE_ID `\n --project=PROJECT_ID `\n --region=LOCATION\n```\n\n#### Windows (cmd.exe)\n\n**Note:** Ensure you have initialized the Google Cloud CLI with authentication and a project by running either [gcloud init](/sdk/gcloud/reference/init); or [gcloud auth login](/sdk/gcloud/reference/auth/login) and [gcloud config set project](/sdk/gcloud/reference/config/set). \n\n```bash\ngcloud ai persistent-resources reboot PERSISTENT_RESOURCE_ID ^\n --project=PROJECT_ID ^\n --region=LOCATION\n```\n\nYou should receive a response similar to the following:\n\n```\nUsing endpoint [https://us-central1-aiplatform.googleapis.com/]\nRequest to reboot the PersistentResource [projects/sample-project/locations/us-central1/persistentResources/test-persistent-resource] has been sent.\n\nYou may view the status of your persistent resource with the command\n\n $ gcloud ai persistent-resources describe projects/sample-project/locations/us-central1/persistentResources/test-persistent-resource\n```\n\n### REST\n\n\nBefore using any of the request data,\nmake the following replacements:\n\n- \u003cvar class=\"edit\" scope=\"PROJECT_ID\" translate=\"no\"\u003ePROJECT_ID\u003c/var\u003e: The Project ID of the persistent resource that you want to reboot.\n- \u003cvar class=\"edit\" scope=\"LOCATION\" translate=\"no\"\u003eLOCATION\u003c/var\u003e: The region of the persistent resource that you want to reboot.\n- \u003cvar class=\"edit\" scope=\"PERSISTENT_RESOURCE_ID\" translate=\"no\"\u003ePERSISTENT_RESOURCE_ID\u003c/var\u003e: The ID of the persistent resource that you want to reboot.\n\n\nHTTP method and URL:\n\n```\nPOST https://us-central1-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/persistentResources/PERSISTENT_RESOURCE_ID:reboot\n```\n\nTo send your request, expand one of these options:\n\n#### curl (Linux, macOS, or Cloud Shell)\n\n| **Note:** The following command assumes that you have logged in to the `gcloud` CLI with your user account by running [`gcloud init`](/sdk/gcloud/reference/init) or [`gcloud auth login`](/sdk/gcloud/reference/auth/login) , or by using [Cloud Shell](/shell/docs), which automatically logs you into the `gcloud` CLI . You can check the currently active account by running [`gcloud auth list`](/sdk/gcloud/reference/auth/list).\n\n\nExecute the following command:\n\n```\ncurl -X POST \\\n -H \"Authorization: Bearer $(gcloud auth print-access-token)\" \\\n -H \"Content-Type: application/json; charset=utf-8\" \\\n -d \"\" \\\n \"https://us-central1-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/persistentResources/PERSISTENT_RESOURCE_ID:reboot\"\n```\n\n#### PowerShell (Windows)\n\n| **Note:** The following command assumes that you have logged in to the `gcloud` CLI with your user account by running [`gcloud init`](/sdk/gcloud/reference/init) or [`gcloud auth login`](/sdk/gcloud/reference/auth/login) . You can check the currently active account by running [`gcloud auth list`](/sdk/gcloud/reference/auth/list).\n\n\nExecute the following command:\n\n```\n$cred = gcloud auth print-access-token\n$headers = @{ \"Authorization\" = \"Bearer $cred\" }\n\nInvoke-WebRequest `\n -Method POST `\n -Headers $headers `\n -Uri \"https://us-central1-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/persistentResources/PERSISTENT_RESOURCE_ID:reboot\" | Select-Object -Expand Content\n```\n\nYou should receive a JSON response similar to the following:\n\n```\nresponse: \n {\n \"name\": \"projects/123456789012/locations/us-central1/persistentResources/test-persistent-resource/operations/1234567890123456789\",\n \"metadata\": {\n \"@type\": \"type.googleapis.com/google.cloud.aiplatform.v1.RebootPersistentResourceOperationMetadata\",\n \"genericMetadata\": {\n \"createTime\": \"2024-03-18T17:31:54.955004Z\",\n \"updateTime\": \"2024-03-18T17:31:55.204817Z\",\n \"state\": \"RUNNING\",\n \"worksOn\": [\n \"projects/123456789012/locations/us-central1/persistentResources/test-persistent-resource\"\n ]\n },\n \"progressMessage\": \"Waiting for persistent resource shut down.\"\n }\n }\n```\n\n\u003cbr /\u003e\n\nRebooting a persistent resource is a\n[long running operation](/vertex-ai/docs/general/long-running-operations),\nduring which the persistent resource can't be deleted. The operation contains a\n`progressMessage` field that populates with an error status if one occurs. After\nthe operation indicates `\"done: true\"`,\n[check the status](/vertex-ai/docs/training/persistent-resource-get#get_information_about_a_persistent_resource)\nof the persistent resource. If the persistent resource is in the `RUNNING`\nstate, the reboot is successful and it's ready to run training jobs.\n\nLimitations\n-----------\n\nThe following are limitations for rebooting a persistent resource:\n\n- In some cases, it's possible to lose capacity of scarce resources when rebooting a persistent resource. Full resource retention is not guaranteed.\n- Reboot is not available on Ray on Vertex AI.\n- Persistent resources containing autoscaled worker pools reboot with the minimum replica count.\n\nWhat's next\n-----------\n\n- [Learn about persistent resource](/vertex-ai/docs/training/persistent-resource-overview).\n- [Create and use a persistent resource](/vertex-ai/docs/training/persistent-resource-create).\n- [Run training jobs on a persistent resource](/vertex-ai/docs/training/persistent-resource-train).\n- [Get information about a persistent resource](/vertex-ai/docs/training/persistent-resource-get).\n- [Delete a persistent resource](/vertex-ai/docs/training/persistent-resource-delete)."]]