Mantenha tudo organizado com as coleções
Salve e categorize o conteúdo com base nas suas preferências.
Os modelos de classificação binária preveem um resultado binário (uma
de duas classes). Use esse tipo de modelo para perguntas sim ou não. Por exemplo, é possível
criar um modelo de classificação binária para prever se um cliente faria
uma assinatura. Geralmente, um problema de classificação binária requer menos dados do que outros tipos de modelo.
Os modelos de classificação multiclasse preveem uma classe entre três
ou mais classes distintas. Use esse tipo de modelo para categorização. Por exemplo, como
varejista, convém criar um modelo de classificação multiclasse para segmentar clientes em diferentes perfis.
Os modelos de regressão preveem um valor contínuo. Por exemplo, como varejista, talvez você queira criar um modelo de regressão para prever quanto um cliente vai gastar no próximo mês.
Fluxo de trabalho para criar um modelo de classificação ou regressão e fazer inferências
O processo para criar um modelo de classificação ou regressão na Vertex AI é o seguinte:
[[["Fácil de entender","easyToUnderstand","thumb-up"],["Meu problema foi resolvido","solvedMyProblem","thumb-up"],["Outro","otherUp","thumb-up"]],[["Difícil de entender","hardToUnderstand","thumb-down"],["Informações incorretas ou exemplo de código","incorrectInformationOrSampleCode","thumb-down"],["Não contém as informações/amostras de que eu preciso","missingTheInformationSamplesINeed","thumb-down"],["Problema na tradução","translationIssue","thumb-down"],["Outro","otherDown","thumb-down"]],[],[],[],null,["# Classification and regression overview\n\n**Binary classification** models predict a binary outcome (one of\ntwo classes). Use this model type for yes or no questions. For example, you might want\nto build a binary classification model to predict whether a customer would\nbuy a subscription. Generally, a binary classification\nproblem requires less data than other model types.\n\n\n**Multi-class classification** models predict one class from three\nor more discrete classes. Use this model type for categorization. For example, as a\nretailer, you might want to build a multi-class classification model to segment\ncustomers into different personas.\n\n\n**Regression** models predict a continuous value. For example, as a retailer,\nyou might want to build a regression model to predict how much a\ncustomer will spend next month.\n\nWorkflow for creating a classification or regression model and making inferences\n--------------------------------------------------------------------------------\n\nThe process for creating a classification or regression model in\nVertex AI is as follows:\n\n| To see an example of how to create, train, and use an AutoML\n| classification model for online predictions,\n| run the \"AutoML tabular training and prediction\" notebook in one of the following\n| environments:\n|\n| [Open in Colab](https://colab.research.google.com/github/GoogleCloudPlatform/vertex-ai-samples/blob/main/notebooks/official/automl/automl-tabular-classification.ipynb)\n|\n|\n| \\|\n|\n| [Open in Colab Enterprise](https://console.cloud.google.com/vertex-ai/colab/import/https%3A%2F%2Fraw.githubusercontent.com%2FGoogleCloudPlatform%2Fvertex-ai-samples%2Fmain%2Fnotebooks%2Fofficial%2Fautoml%2Fautoml-tabular-classification.ipynb)\n|\n|\n| \\|\n|\n| [Open\n| in Vertex AI Workbench](https://console.cloud.google.com/vertex-ai/workbench/deploy-notebook?download_url=https%3A%2F%2Fraw.githubusercontent.com%2FGoogleCloudPlatform%2Fvertex-ai-samples%2Fmain%2Fnotebooks%2Fofficial%2Fautoml%2Fautoml-tabular-classification.ipynb)\n|\n|\n| \\|\n|\n[View on GitHub](https://github.com/GoogleCloudPlatform/vertex-ai-samples/blob/main/notebooks/official/automl/automl-tabular-classification.ipynb) \n| To see an example of how to create, train, and use an AutoML\n| regression model for batch predictions,\n| run the \"AutoML training tabular regression model for batch prediction using BigQuery\" notebook in one of the following\n| environments:\n|\n| [Open in Colab](https://colab.research.google.com/github/GoogleCloudPlatform/vertex-ai-samples/blob/main/notebooks/official/automl/sdk_automl_tabular_regression_batch_bq.ipynb)\n|\n|\n| \\|\n|\n| [Open in Colab Enterprise](https://console.cloud.google.com/vertex-ai/colab/import/https%3A%2F%2Fraw.githubusercontent.com%2FGoogleCloudPlatform%2Fvertex-ai-samples%2Fmain%2Fnotebooks%2Fofficial%2Fautoml%2Fsdk_automl_tabular_regression_batch_bq.ipynb)\n|\n|\n| \\|\n|\n| [Open\n| in Vertex AI Workbench](https://console.cloud.google.com/vertex-ai/workbench/deploy-notebook?download_url=https%3A%2F%2Fraw.githubusercontent.com%2FGoogleCloudPlatform%2Fvertex-ai-samples%2Fmain%2Fnotebooks%2Fofficial%2Fautoml%2Fsdk_automl_tabular_regression_batch_bq.ipynb)\n|\n|\n| \\|\n|\n[View on GitHub](https://github.com/GoogleCloudPlatform/vertex-ai-samples/blob/main/notebooks/official/automl/sdk_automl_tabular_regression_batch_bq.ipynb) \n| To see an example of how to create, train, and use an AutoML\n| regression model for online predictions,\n| run the \"AutoML training tabular regression model for online prediction using BigQuery\" notebook in one of the following\n| environments:\n|\n| [Open in Colab](https://colab.research.google.com/github/GoogleCloudPlatform/vertex-ai-samples/blob/main/notebooks/official/automl/sdk_automl_tabular_regression_online_bq.ipynb)\n|\n|\n| \\|\n|\n| [Open in Colab Enterprise](https://console.cloud.google.com/vertex-ai/colab/import/https%3A%2F%2Fraw.githubusercontent.com%2FGoogleCloudPlatform%2Fvertex-ai-samples%2Fmain%2Fnotebooks%2Fofficial%2Fautoml%2Fsdk_automl_tabular_regression_online_bq.ipynb)\n|\n|\n| \\|\n|\n| [Open\n| in Vertex AI Workbench](https://console.cloud.google.com/vertex-ai/workbench/deploy-notebook?download_url=https%3A%2F%2Fraw.githubusercontent.com%2FGoogleCloudPlatform%2Fvertex-ai-samples%2Fmain%2Fnotebooks%2Fofficial%2Fautoml%2Fsdk_automl_tabular_regression_online_bq.ipynb)\n|\n|\n| \\|\n|\n| [View on GitHub](https://github.com/GoogleCloudPlatform/vertex-ai-samples/blob/main/notebooks/official/automl/sdk_automl_tabular_regression_online_bq.ipynb)"]]