Avalie os modelos de classificação e regressão do AutoML

Nesta página, mostramos como avaliar modelos de classificação e regressão do AutoML.

A Vertex AI fornece métricas de avaliação de modelo para ajudar você a determinar o desempenho dos seus modelos, como métricas de precisão e recall. A Vertex AI calcula as métricas de avaliação usando o conjunto de teste.

Antes de começar

Antes de avaliar o modelo, é preciso treiná-lo.

Como usar métricas de avaliação do modelo

As métricas de avaliação do modelo são medidas que avaliam o desempenho do seu modelo no conjunto de teste. A forma como você interpreta e usa essas métricas depende das necessidades do seu negócio e do problema que seu modelo é treinado para solucionar. Por exemplo, você pode ter uma tolerância menor a falsos positivos do que para falsos negativos ou vice-versa. Esses tipos de perguntas afetam as métricas que podem ser relevantes para você.

Como receber métricas de avaliação

É possível receber um conjunto agregado de métricas de avaliação para o modelo e, para alguns objetivos, métricas de avaliação de uma classe ou rótulo específico. As métricas de avaliação de uma classe ou rótulo específico também são conhecidas como fração de avaliação. O conteúdo a seguir descreve como receber métricas de avaliação agregadas e frações de avaliação usando o Console ou a API do Google Cloud.

Console do Google Cloud

  1. No Console do Google Cloud, na seção "Vertex AI", acesse a página Modelos.

    Acessar a página de modelos

  2. Na lista suspensa Região, selecione a região em que seu modelo está localizado.

  3. Na lista de modelos, clique no seu modelo para abrir a guia Avaliar.

    Na guia Avaliar, é possível visualizar as métricas agregadas de avaliação do modelo, como Precisão média e Recall.

    Se o objetivo do modelo tiver frações de avaliação, o console mostrará uma lista de rótulos. Clique em um rótulo para visualizar as métricas de avaliação, conforme mostrado no exemplo a seguir:

    seleção de rótulos no console

API

As solicitações de API para receber métricas de avaliação são as mesmas para cada tipo de dado e objetivo, mas as saídas são diferentes. Os exemplos a seguir mostram a mesma solicitação, mas saídas diferentes.

Como receber métricas agregadas de avaliação de modelo

As métricas agregadas de avaliação de modelo fornecem informações sobre o modelo como um todo. Para ver informações sobre uma fração específica, liste as frações de avaliação do modelo.

Para visualizar as métricas agregadas de avaliação do modelo, use o método projects.locations.models.evaluations.get.

Selecione a guia abaixo para seu objetivo:

Classificação

A Vertex AI retorna uma matriz de métricas de confiança. Cada elemento mostra métricas de avaliação em um valor confidenceThreshold diferente (começando em 0 e indo até 1). Ao visualizar diferentes valores de limite, é possível ver como o limite afeta outras métricas, como precisão e recall.

Selecione uma guia que corresponda ao seu idioma ou ambiente:

REST

Antes de usar os dados da solicitação abaixo, faça as substituições a seguir:

  • LOCATION: região onde seu modelo é armazenado.
  • PROJECT: o ID do projeto.
  • MODEL_ID: o ID do recurso do modelo.
  • PROJECT_NUMBER: o número do projeto gerado automaticamente.
  • EVALUATION_ID: ID da avaliação do modelo (aparece na resposta).

Método HTTP e URL:

GET https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT/locations/LOCATION/models/MODEL_ID/evaluations

Para enviar a solicitação, escolha uma destas opções:

curl

execute o seguinte comando:

curl -X GET \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
"https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT/locations/LOCATION/models/MODEL_ID/evaluations"

PowerShell

execute o seguinte comando:

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method GET `
-Headers $headers `
-Uri "https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT/locations/LOCATION/models/MODEL_ID/evaluations" | Select-Object -Expand Content

Você receberá uma resposta JSON semelhante a esta:

Java

Antes de testar esse exemplo, siga as instruções de configuração para Java no Guia de início rápido da Vertex AI sobre como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API Vertex AI para Java.

Para autenticar na Vertex AI, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.


import com.google.cloud.aiplatform.v1.ModelEvaluation;
import com.google.cloud.aiplatform.v1.ModelEvaluationName;
import com.google.cloud.aiplatform.v1.ModelServiceClient;
import com.google.cloud.aiplatform.v1.ModelServiceSettings;
import java.io.IOException;

public class GetModelEvaluationTabularClassificationSample {

  public static void main(String[] args) throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    // To obtain evaluationId run the code block below after setting modelServiceSettings.
    //
    // try (ModelServiceClient modelServiceClient = ModelServiceClient.create(modelServiceSettings))
    // {
    //   String location = "us-central1";
    //   ModelName modelFullId = ModelName.of(project, location, modelId);
    //   ListModelEvaluationsRequest modelEvaluationsrequest =
    //   ListModelEvaluationsRequest.newBuilder().setParent(modelFullId.toString()).build();
    //   for (ModelEvaluation modelEvaluation :
    //     modelServiceClient.listModelEvaluations(modelEvaluationsrequest).iterateAll()) {
    //       System.out.format("Model Evaluation Name: %s%n", modelEvaluation.getName());
    //   }
    // }
    String project = "YOUR_PROJECT_ID";
    String modelId = "YOUR_MODEL_ID";
    String evaluationId = "YOUR_EVALUATION_ID";
    getModelEvaluationTabularClassification(project, modelId, evaluationId);
  }

  static void getModelEvaluationTabularClassification(
      String project, String modelId, String evaluationId) throws IOException {
    ModelServiceSettings modelServiceSettings =
        ModelServiceSettings.newBuilder()
            .setEndpoint("us-central1-aiplatform.googleapis.com:443")
            .build();

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (ModelServiceClient modelServiceClient = ModelServiceClient.create(modelServiceSettings)) {
      String location = "us-central1";
      ModelEvaluationName modelEvaluationName =
          ModelEvaluationName.of(project, location, modelId, evaluationId);
      ModelEvaluation modelEvaluation = modelServiceClient.getModelEvaluation(modelEvaluationName);

      System.out.println("Get Model Evaluation Tabular Classification Response");
      System.out.format("\tName: %s\n", modelEvaluation.getName());
      System.out.format("\tMetrics Schema Uri: %s\n", modelEvaluation.getMetricsSchemaUri());
      System.out.format("\tMetrics: %s\n", modelEvaluation.getMetrics());
      System.out.format("\tCreate Time: %s\n", modelEvaluation.getCreateTime());
      System.out.format("\tSlice Dimensions: %s\n", modelEvaluation.getSliceDimensionsList());
    }
  }
}

Node.js

Antes de testar essa amostra, siga as instruções de configuração para Node.js Guia de início rápido da Vertex AI: como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API Vertex AI para Node.js.

Para autenticar na Vertex AI, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.

/**
 * TODO(developer): Uncomment these variables before running the sample
 * (not necessary if passing values as arguments). To obtain evaluationId,
 * instantiate the client and run the following the commands.
 */
// const parentName = `projects/${project}/locations/${location}/models/${modelId}`;
// const evalRequest = {
//   parent: parentName
// };
// const [evalResponse] = await modelServiceClient.listModelEvaluations(evalRequest);
// console.log(evalResponse);

// const modelId = 'YOUR_MODEL_ID';
// const evaluationId = 'YOUR_EVALUATION_ID';
// const project = 'YOUR_PROJECT_ID';
// const location = 'YOUR_PROJECT_LOCATION';

// Imports the Google Cloud Model Service Client library
const {ModelServiceClient} = require('@google-cloud/aiplatform');

// Specifies the location of the api endpoint
const clientOptions = {
  apiEndpoint: 'us-central1-aiplatform.googleapis.com',
};

// Instantiates a client
const modelServiceClient = new ModelServiceClient(clientOptions);

async function getModelEvaluationTabularClassification() {
  // Configure the parent resources
  const name = `projects/${project}/locations/${location}/models/${modelId}/evaluations/${evaluationId}`;
  const request = {
    name,
  };

  // Get model evaluation request
  const [response] = await modelServiceClient.getModelEvaluation(request);

  console.log('Get model evaluation tabular classification response');
  console.log(`\tName : ${response.name}`);
  console.log(`\tMetrics schema uri : ${response.metricsSchemaUri}`);
  console.log(`\tMetrics : ${JSON.stringify(response.metrics)}`);
  console.log(`\tCreate time : ${JSON.stringify(response.createTime)}`);
  console.log(`\tSlice dimensions : ${response.sliceDimensions}`);

  const modelExplanation = response.modelExplanation;
  console.log('\tModel explanation');
  if (!modelExplanation) {
    console.log('\t\t{}');
  } else {
    const meanAttributions = modelExplanation.meanAttributions;
    if (!meanAttributions) {
      console.log('\t\t\t []');
    } else {
      for (const meanAttribution of meanAttributions) {
        console.log('\t\tMean attribution');
        console.log(
          `\t\t\tBaseline output value : \
            ${meanAttribution.baselineOutputValue}`
        );
        console.log(
          `\t\t\tInstance output value : \
            ${meanAttribution.instanceOutputValue}`
        );
        console.log(
          `\t\t\tFeature attributions : \
            ${JSON.stringify(meanAttribution.featureAttributions)}`
        );
        console.log(`\t\t\tOutput index : ${meanAttribution.outputIndex}`);
        console.log(
          `\t\t\tOutput display name : \
            ${meanAttribution.outputDisplayName}`
        );
        console.log(
          `\t\t\tApproximation error : \
            ${meanAttribution.approximationError}`
        );
      }
    }
  }
}
getModelEvaluationTabularClassification();

Python

Para saber como instalar o SDK da Vertex AI para Python, consulte Instalar o SDK da Vertex AI para Python. Para mais informações, consulte a documentação de referência da API Python.

from google.cloud import aiplatform

def get_model_evaluation_tabular_classification_sample(
    project: str,
    model_id: str,
    evaluation_id: str,
    location: str = "us-central1",
    api_endpoint: str = "us-central1-aiplatform.googleapis.com",
):
    """
    To obtain evaluation_id run the following commands where LOCATION
    is the region where the model is stored, PROJECT is the project ID,
    and MODEL_ID is the ID of your model.

    model_client = aiplatform.gapic.ModelServiceClient(
        client_options={
            'api_endpoint':'LOCATION-aiplatform.googleapis.com'
            }
        )
    evaluations = model_client.list_model_evaluations(parent='projects/PROJECT/locations/LOCATION/models/MODEL_ID')
    print("evaluations:", evaluations)
    """
    # The AI Platform services require regional API endpoints.
    client_options = {"api_endpoint": api_endpoint}
    # Initialize client that will be used to create and send requests.
    # This client only needs to be created once, and can be reused for multiple requests.
    client = aiplatform.gapic.ModelServiceClient(client_options=client_options)
    name = client.model_evaluation_path(
        project=project, location=location, model=model_id, evaluation=evaluation_id
    )
    response = client.get_model_evaluation(name=name)
    print("response:", response)

Regressão

Selecione uma guia que corresponda ao seu idioma ou ambiente:

REST

Antes de usar os dados da solicitação abaixo, faça as substituições a seguir:

  • LOCATION: região onde seu modelo é armazenado.
  • PROJECT: o ID do projeto.
  • MODEL_ID: o ID do recurso do modelo.
  • PROJECT_NUMBER: o número do projeto gerado automaticamente.
  • EVALUATION_ID: ID da avaliação do modelo (aparece na resposta).

Método HTTP e URL:

GET https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT/locations/LOCATION/models/MODEL_ID/evaluations

Para enviar a solicitação, escolha uma destas opções:

curl

execute o seguinte comando:

curl -X GET \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
"https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT/locations/LOCATION/models/MODEL_ID/evaluations"

PowerShell

execute o seguinte comando:

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method GET `
-Headers $headers `
-Uri "https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT/locations/LOCATION/models/MODEL_ID/evaluations" | Select-Object -Expand Content

Você receberá uma resposta JSON semelhante a esta:

Java

Antes de testar esse exemplo, siga as instruções de configuração para Java no Guia de início rápido da Vertex AI sobre como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API Vertex AI para Java.

Para autenticar na Vertex AI, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.


import com.google.cloud.aiplatform.v1.ModelEvaluation;
import com.google.cloud.aiplatform.v1.ModelEvaluationName;
import com.google.cloud.aiplatform.v1.ModelServiceClient;
import com.google.cloud.aiplatform.v1.ModelServiceSettings;
import java.io.IOException;

public class GetModelEvaluationTabularRegressionSample {

  public static void main(String[] args) throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    // To obtain evaluationId run the code block below after setting modelServiceSettings.
    //
    // try (ModelServiceClient modelServiceClient = ModelServiceClient.create(modelServiceSettings))
    // {
    //   String location = "us-central1";
    //   ModelName modelFullId = ModelName.of(project, location, modelId);
    //   ListModelEvaluationsRequest modelEvaluationsrequest =
    //   ListModelEvaluationsRequest.newBuilder().setParent(modelFullId.toString()).build();
    //   for (ModelEvaluation modelEvaluation :
    //     modelServiceClient.listModelEvaluations(modelEvaluationsrequest).iterateAll()) {
    //       System.out.format("Model Evaluation Name: %s%n", modelEvaluation.getName());
    //   }
    // }
    String project = "YOUR_PROJECT_ID";
    String modelId = "YOUR_MODEL_ID";
    String evaluationId = "YOUR_EVALUATION_ID";
    getModelEvaluationTabularRegression(project, modelId, evaluationId);
  }

  static void getModelEvaluationTabularRegression(
      String project, String modelId, String evaluationId) throws IOException {
    ModelServiceSettings modelServiceSettings =
        ModelServiceSettings.newBuilder()
            .setEndpoint("us-central1-aiplatform.googleapis.com:443")
            .build();

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (ModelServiceClient modelServiceClient = ModelServiceClient.create(modelServiceSettings)) {
      String location = "us-central1";
      ModelEvaluationName modelEvaluationName =
          ModelEvaluationName.of(project, location, modelId, evaluationId);
      ModelEvaluation modelEvaluation = modelServiceClient.getModelEvaluation(modelEvaluationName);

      System.out.println("Get Model Evaluation Tabular Regression Response");
      System.out.format("\tName: %s\n", modelEvaluation.getName());
      System.out.format("\tMetrics Schema Uri: %s\n", modelEvaluation.getMetricsSchemaUri());
      System.out.format("\tMetrics: %s\n", modelEvaluation.getMetrics());
      System.out.format("\tCreate Time: %s\n", modelEvaluation.getCreateTime());
      System.out.format("\tSlice Dimensions: %s\n", modelEvaluation.getSliceDimensionsList());
    }
  }
}

Node.js

Antes de testar essa amostra, siga as instruções de configuração para Node.js Guia de início rápido da Vertex AI: como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API Vertex AI para Node.js.

Para autenticar na Vertex AI, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.

/**
 * TODO(developer): Uncomment these variables before running the sample
 * (not necessary if passing values as arguments). To obtain evaluationId,
 * instantiate the client and run the following the commands.
 */
// const parentName = `projects/${project}/locations/${location}/models/${modelId}`;
// const evalRequest = {
//   parent: parentName
// };
// const [evalResponse] = await modelServiceClient.listModelEvaluations(evalRequest);
// console.log(evalResponse);

// const modelId = 'YOUR_MODEL_ID';
// const evaluationId = 'YOUR_EVALUATION_ID';
// const project = 'YOUR_PROJECT_ID';
// const location = 'YOUR_PROJECT_LOCATION';

// Imports the Google Cloud Model Service Client library
const {ModelServiceClient} = require('@google-cloud/aiplatform');

// Specifies the location of the api endpoint
const clientOptions = {
  apiEndpoint: 'us-central1-aiplatform.googleapis.com',
};

// Instantiates a client
const modelServiceClient = new ModelServiceClient(clientOptions);

async function getModelEvaluationTabularRegression() {
  // Configure the parent resources
  const name = `projects/${project}/locations/${location}/models/${modelId}/evaluations/${evaluationId}`;
  const request = {
    name,
  };

  // Get model evaluation request
  const [response] = await modelServiceClient.getModelEvaluation(request);

  console.log('Get model evaluation tabular regression response');
  console.log(`\tName : ${response.name}`);
  console.log(`\tMetrics schema uri : ${response.metricsSchemaUri}`);
  console.log(`\tMetrics : ${JSON.stringify(response.metrics)}`);
  console.log(`\tCreate time : ${JSON.stringify(response.createTime)}`);
  console.log(`\tSlice dimensions : ${response.sliceDimensions}`);

  const modelExplanation = response.modelExplanation;
  console.log('\tModel explanation');
  if (!modelExplanation) {
    console.log('\t\t{}');
  } else {
    const meanAttributions = modelExplanation.meanAttributions;
    if (!meanAttributions) {
      console.log('\t\t\t []');
    } else {
      for (const meanAttribution of meanAttributions) {
        console.log('\t\tMean attribution');
        console.log(
          `\t\t\tBaseline output value : \
            ${meanAttribution.baselineOutputValue}`
        );
        console.log(
          `\t\t\tInstance output value : \
            ${meanAttribution.instanceOutputValue}`
        );
        console.log(
          `\t\t\tFeature attributions : \
            ${JSON.stringify(meanAttribution.featureAttributions)}`
        );
        console.log(`\t\t\tOutput index : ${meanAttribution.outputIndex}`);
        console.log(
          `\t\t\tOutput display name : \
            ${meanAttribution.outputDisplayName}`
        );
        console.log(
          `\t\t\tApproximation error : \
            ${meanAttribution.approximationError}`
        );
      }
    }
  }
}
getModelEvaluationTabularRegression();

Python

Para saber como instalar o SDK da Vertex AI para Python, consulte Instalar o SDK da Vertex AI para Python. Para mais informações, consulte a documentação de referência da API Python.

from google.cloud import aiplatform

def get_model_evaluation_tabular_regression_sample(
    project: str,
    model_id: str,
    evaluation_id: str,
    location: str = "us-central1",
    api_endpoint: str = "us-central1-aiplatform.googleapis.com",
):
    """
    To obtain evaluation_id run the following commands where LOCATION
    is the region where the model is stored, PROJECT is the project ID,
    and MODEL_ID is the ID of your model.

    model_client = aiplatform.gapic.ModelServiceClient(
        client_options={
            'api_endpoint':'LOCATION-aiplatform.googleapis.com'
            }
        )
    evaluations = model_client.list_model_evaluations(parent='projects/PROJECT/locations/LOCATION/models/MODEL_ID')
    print("evaluations:", evaluations)
    """
    # The AI Platform services require regional API endpoints.
    client_options = {"api_endpoint": api_endpoint}
    # Initialize client that will be used to create and send requests.
    # This client only needs to be created once, and can be reused for multiple requests.
    client = aiplatform.gapic.ModelServiceClient(client_options=client_options)
    name = client.model_evaluation_path(
        project=project, location=location, model=model_id, evaluation=evaluation_id
    )
    response = client.get_model_evaluation(name=name)
    print("response:", response)

Listar todas as frações de avaliação (somente modelos de classificação)

O método projects.locations.models.evaluations.slices.list lista todas as frações de avaliação do modelo. É necessário ter o ID de avaliação do modelo, que é possível conseguir ao visualizar as métricas agregadas de avaliação.

É possível usar frações de avaliação de modelo para determinar como foi o desempenho do modelo em um rótulo específico. O campo value informa para quais rótulos as métricas são usadas.

A Vertex AI retorna uma matriz de métricas de confiança. Cada elemento mostra métricas de avaliação em um valor confidenceThreshold diferente (começando em 0 e indo até 1). Ao visualizar diferentes valores de limite, é possível ver como o limite afeta outras métricas, como precisão e recall.

REST

Antes de usar os dados da solicitação abaixo, faça as substituições a seguir:

  • LOCATION: região onde o modelo está localizado. Por exemplo, us-central1.
  • PROJECT: o ID do projeto.
  • MODEL_ID: o ID do modelo.
  • EVALUATION_ID: ID da avaliação do modelo que contém as frações de avaliação a serem listadas.

Método HTTP e URL:

GET https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT/locations/LOCATION/models/MODEL_ID/evaluations/EVALUATION_ID/slices

Para enviar a solicitação, escolha uma destas opções:

curl

execute o seguinte comando:

curl -X GET \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
"https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT/locations/LOCATION/models/MODEL_ID/evaluations/EVALUATION_ID/slices"

PowerShell

execute o seguinte comando:

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method GET `
-Headers $headers `
-Uri "https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT/locations/LOCATION/models/MODEL_ID/evaluations/EVALUATION_ID/slices" | Select-Object -Expand Content

Você receberá uma resposta JSON semelhante a esta:

Java

Antes de testar esse exemplo, siga as instruções de configuração para Java no Guia de início rápido da Vertex AI sobre como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API Vertex AI para Java.

Para autenticar na Vertex AI, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.


import com.google.cloud.aiplatform.v1.ModelEvaluationName;
import com.google.cloud.aiplatform.v1.ModelEvaluationSlice;
import com.google.cloud.aiplatform.v1.ModelEvaluationSlice.Slice;
import com.google.cloud.aiplatform.v1.ModelServiceClient;
import com.google.cloud.aiplatform.v1.ModelServiceSettings;
import java.io.IOException;

public class ListModelEvaluationSliceSample {

  public static void main(String[] args) throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    // To obtain evaluationId run the code block below after setting modelServiceSettings.
    //
    // try (ModelServiceClient modelServiceClient = ModelServiceClient.create(modelServiceSettings))
    // {
    //   String location = "us-central1";
    //   ModelName modelFullId = ModelName.of(project, location, modelId);
    //   ListModelEvaluationsRequest modelEvaluationsrequest =
    //   ListModelEvaluationsRequest.newBuilder().setParent(modelFullId.toString()).build();
    //   for (ModelEvaluation modelEvaluation :
    //     modelServiceClient.listModelEvaluations(modelEvaluationsrequest).iterateAll()) {
    //       System.out.format("Model Evaluation Name: %s%n", modelEvaluation.getName());
    //   }
    // }
    String project = "YOUR_PROJECT_ID";
    String modelId = "YOUR_MODEL_ID";
    String evaluationId = "YOUR_EVALUATION_ID";
    listModelEvaluationSliceSample(project, modelId, evaluationId);
  }

  static void listModelEvaluationSliceSample(String project, String modelId, String evaluationId)
      throws IOException {
    ModelServiceSettings modelServiceSettings =
        ModelServiceSettings.newBuilder()
            .setEndpoint("us-central1-aiplatform.googleapis.com:443")
            .build();

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (ModelServiceClient modelServiceClient = ModelServiceClient.create(modelServiceSettings)) {
      String location = "us-central1";
      ModelEvaluationName modelEvaluationName =
          ModelEvaluationName.of(project, location, modelId, evaluationId);

      for (ModelEvaluationSlice modelEvaluationSlice :
          modelServiceClient.listModelEvaluationSlices(modelEvaluationName).iterateAll()) {
        System.out.format("Model Evaluation Slice Name: %s\n", modelEvaluationSlice.getName());
        System.out.format("Metrics Schema Uri: %s\n", modelEvaluationSlice.getMetricsSchemaUri());
        System.out.format("Metrics: %s\n", modelEvaluationSlice.getMetrics());
        System.out.format("Create Time: %s\n", modelEvaluationSlice.getCreateTime());

        Slice slice = modelEvaluationSlice.getSlice();
        System.out.format("Slice Dimensions: %s\n", slice.getDimension());
        System.out.format("Slice Value: %s\n\n", slice.getValue());
      }
    }
  }
}

Node.js

Antes de testar essa amostra, siga as instruções de configuração para Node.js Guia de início rápido da Vertex AI: como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API Vertex AI para Node.js.

Para autenticar na Vertex AI, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.

/**
 * TODO(developer): Uncomment these variables before running the sample
 * (not necessary if passing values as arguments). To obtain evaluationId,
 * instantiate the client and run the following the commands.
 */
// const parentName = `projects/${project}/locations/${location}/models/${modelId}`;
// const evalRequest = {
//   parent: parentName
// };
// const [evalResponse] = await modelServiceClient.listModelEvaluations(evalRequest);
// console.log(evalResponse);

// const modelId = 'YOUR_MODEL_ID';
// const evaluationId = 'YOUR_EVALUATION_ID';
// const project = 'YOUR_PROJECT_ID';
// const location = 'YOUR_PROJECT_LOCATION';

// Imports the Google Cloud Model Service Client library
const {ModelServiceClient} = require('@google-cloud/aiplatform');

// Specifies the location of the api endpoint
const clientOptions = {
  apiEndpoint: 'us-central1-aiplatform.googleapis.com',
};

// Instantiates a client
const modelServiceClient = new ModelServiceClient(clientOptions);

async function listModelEvaluationSlices() {
  // Configure the parent resources
  const parent = `projects/${project}/locations/${location}/models/${modelId}/evaluations/${evaluationId}`;
  const request = {
    parent,
  };

  // Get and print out a list of all the evaluation slices for this resource
  const [response] =
    await modelServiceClient.listModelEvaluationSlices(request);
  console.log('List model evaluation response', response);
  console.log(response);
}
listModelEvaluationSlices();

Python

Para saber como instalar o SDK da Vertex AI para Python, consulte Instalar o SDK da Vertex AI para Python. Para mais informações, consulte a documentação de referência da API Python.

from google.cloud import aiplatform

def list_model_evaluation_slices_sample(
    project: str,
    model_id: str,
    evaluation_id: str,
    location: str = "us-central1",
    api_endpoint: str = "us-central1-aiplatform.googleapis.com",
):
    """
    To obtain evaluation_id run the following commands where LOCATION
    is the region where the model is stored, PROJECT is the project ID,
    and MODEL_ID is the ID of your model.

    model_client = aiplatform.gapic.ModelServiceClient(
        client_options={
            'api_endpoint':'LOCATION-aiplatform.googleapis.com'
            }
        )
    evaluations = model_client.list_model_evaluations(parent='projects/PROJECT/locations/LOCATION/models/MODEL_ID')
    print("evaluations:", evaluations)
    """
    # The AI Platform services require regional API endpoints.
    client_options = {"api_endpoint": api_endpoint}
    # Initialize client that will be used to create and send requests.
    # This client only needs to be created once, and can be reused for multiple requests.
    client = aiplatform.gapic.ModelServiceClient(client_options=client_options)
    parent = client.model_evaluation_path(
        project=project, location=location, model=model_id, evaluation=evaluation_id
    )
    response = client.list_model_evaluation_slices(parent=parent)
    for model_evaluation_slice in response:
        print("model_evaluation_slice:", model_evaluation_slice)

Como receber métricas para uma única fração

Para visualizar as métricas de avaliação de uma única fração, use o método projects.locations.models.evaluations.slices.get. É necessário ter o ID da fração, que é fornecido quando você lista todas as frações. A amostra a seguir se aplica a todos os tipos de dados e objetivos.

REST

Antes de usar os dados da solicitação abaixo, faça as substituições a seguir:

  • LOCATION: região onde o modelo está localizado. Por exemplo: us-central1.
  • PROJECT: o ID do projeto.
  • MODEL_ID: o ID do modelo.
  • EVALUATION_ID: ID da avaliação do modelo que contém a fração de avaliação a ser recuperada.
  • SLICE_ID: ID de uma fração de avaliação a ser recebida.
  • PROJECT_NUMBER: o número do projeto gerado automaticamente.
  • EVALUATION_METRIC_SCHEMA_FILE_NAME: o nome de um arquivo de esquema que define as métricas de avaliação a serem retornadas, como classification_metrics_1.0.0.

Método HTTP e URL:

GET https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT/locations/LOCATION/models/MODEL_ID/evaluations/EVALUATION_ID/slices/SLICE_ID

Para enviar a solicitação, escolha uma destas opções:

curl

execute o seguinte comando:

curl -X GET \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
"https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT/locations/LOCATION/models/MODEL_ID/evaluations/EVALUATION_ID/slices/SLICE_ID"

PowerShell

execute o seguinte comando:

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method GET `
-Headers $headers `
-Uri "https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT/locations/LOCATION/models/MODEL_ID/evaluations/EVALUATION_ID/slices/SLICE_ID" | Select-Object -Expand Content

Você receberá uma resposta JSON semelhante a esta:

Java

Antes de testar esse exemplo, siga as instruções de configuração para Java no Guia de início rápido da Vertex AI sobre como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API Vertex AI para Java.

Para autenticar na Vertex AI, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.


import com.google.cloud.aiplatform.v1.ModelEvaluationSlice;
import com.google.cloud.aiplatform.v1.ModelEvaluationSlice.Slice;
import com.google.cloud.aiplatform.v1.ModelEvaluationSliceName;
import com.google.cloud.aiplatform.v1.ModelServiceClient;
import com.google.cloud.aiplatform.v1.ModelServiceSettings;
import java.io.IOException;

public class GetModelEvaluationSliceSample {

  public static void main(String[] args) throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    // To obtain evaluationId run the code block below after setting modelServiceSettings.
    //
    // try (ModelServiceClient modelServiceClient = ModelServiceClient.create(modelServiceSettings))
    // {
    //   String location = "us-central1";
    //   ModelName modelFullId = ModelName.of(project, location, modelId);
    //   ListModelEvaluationsRequest modelEvaluationsrequest =
    //   ListModelEvaluationsRequest.newBuilder().setParent(modelFullId.toString()).build();
    //   for (ModelEvaluation modelEvaluation :
    //     modelServiceClient.listModelEvaluations(modelEvaluationsrequest).iterateAll()) {
    //       System.out.format("Model Evaluation Name: %s%n", modelEvaluation.getName());
    //   }
    // }
    String project = "YOUR_PROJECT_ID";
    String modelId = "YOUR_MODEL_ID";
    String evaluationId = "YOUR_EVALUATION_ID";
    String sliceId = "YOUR_SLICE_ID";
    getModelEvaluationSliceSample(project, modelId, evaluationId, sliceId);
  }

  static void getModelEvaluationSliceSample(
      String project, String modelId, String evaluationId, String sliceId) throws IOException {
    ModelServiceSettings modelServiceSettings =
        ModelServiceSettings.newBuilder()
            .setEndpoint("us-central1-aiplatform.googleapis.com:443")
            .build();

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (ModelServiceClient modelServiceClient = ModelServiceClient.create(modelServiceSettings)) {
      String location = "us-central1";
      ModelEvaluationSliceName modelEvaluationSliceName =
          ModelEvaluationSliceName.of(project, location, modelId, evaluationId, sliceId);

      ModelEvaluationSlice modelEvaluationSlice =
          modelServiceClient.getModelEvaluationSlice(modelEvaluationSliceName);

      System.out.println("Get Model Evaluation Slice Response");
      System.out.format("Model Evaluation Slice Name: %s\n", modelEvaluationSlice.getName());
      System.out.format("Metrics Schema Uri: %s\n", modelEvaluationSlice.getMetricsSchemaUri());
      System.out.format("Metrics: %s\n", modelEvaluationSlice.getMetrics());
      System.out.format("Create Time: %s\n", modelEvaluationSlice.getCreateTime());

      Slice slice = modelEvaluationSlice.getSlice();
      System.out.format("Slice Dimensions: %s\n", slice.getDimension());
      System.out.format("Slice Value: %s\n", slice.getValue());
    }
  }
}

Node.js

Antes de testar essa amostra, siga as instruções de configuração para Node.js Guia de início rápido da Vertex AI: como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API Vertex AI para Node.js.

Para autenticar na Vertex AI, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.

/**
 * TODO(developer): Uncomment these variables before running the sample
 * (not necessary if passing values as arguments). To obtain evaluationId,
 * instantiate the client and run the following the commands.
 */
// const parentName = `projects/${project}/locations/${location}/models/${modelId}`;
// const evalRequest = {
//   parent: parentName
// };
// const [evalResponse] = await modelServiceClient.listModelEvaluations(evalRequest);
// console.log(evalResponse);

// const modelId = 'YOUR_MODEL_ID';
// const evaluationId = 'YOUR_EVALUATION_ID';
// const sliceId = 'YOUR_SLICE_ID';
// const project = 'YOUR_PROJECT_ID';
// const location = 'YOUR_PROJECT_LOCATION';

// Imports the Google Cloud Model Service client library
const {ModelServiceClient} = require('@google-cloud/aiplatform');
// Specifies the location of the api endpoint
const clientOptions = {
  apiEndpoint: 'us-central1-aiplatform.googleapis.com',
};
// Specifies the location of the api endpoint
const modelServiceClient = new ModelServiceClient(clientOptions);

async function getModelEvaluationSlice() {
  // Configure the parent resource
  const name = `projects/${project}/locations/${location}/models/${modelId}/evaluations/${evaluationId}/slices/${sliceId}`;
  const request = {
    name,
  };

  // Get and print out a list of all the endpoints for this resource
  const [response] =
    await modelServiceClient.getModelEvaluationSlice(request);

  console.log('Get model evaluation slice');
  console.log(`\tName : ${response.name}`);
  console.log(`\tMetrics_Schema_Uri : ${response.metricsSchemaUri}`);
  console.log(`\tMetrics : ${JSON.stringify(response.metrics)}`);
  console.log(`\tCreate time : ${JSON.stringify(response.createTime)}`);

  console.log('Slice');
  const slice = response.slice;
  console.log(`\tDimension :${slice.dimension}`);
  console.log(`\tValue :${slice.value}`);
}
getModelEvaluationSlice();

Python

Para saber como instalar o SDK da Vertex AI para Python, consulte Instalar o SDK da Vertex AI para Python. Para mais informações, consulte a documentação de referência da API Python.

from google.cloud import aiplatform

def get_model_evaluation_slice_sample(
    project: str,
    model_id: str,
    evaluation_id: str,
    slice_id: str,
    location: str = "us-central1",
    api_endpoint: str = "us-central1-aiplatform.googleapis.com",
):
    """
    To obtain evaluation_id run the following commands where LOCATION
    is the region where the model is stored, PROJECT is the project ID,
    and MODEL_ID is the ID of your model.

    model_client = aiplatform.gapic.ModelServiceClient(
        client_options={
            'api_endpoint':'LOCATION-aiplatform.googleapis.com'
            }
        )
    evaluations = model_client.list_model_evaluations(parent='projects/PROJECT/locations/LOCATION/models/MODEL_ID')
    print("evaluations:", evaluations)
    """
    # The AI Platform services require regional API endpoints.
    client_options = {"api_endpoint": api_endpoint}
    # Initialize client that will be used to create and send requests.
    # This client only needs to be created once, and can be reused for multiple requests.
    client = aiplatform.gapic.ModelServiceClient(client_options=client_options)
    name = client.model_evaluation_slice_path(
        project=project,
        location=location,
        model=model_id,
        evaluation=evaluation_id,
        slice=slice_id,
    )
    response = client.get_model_evaluation_slice(name=name)
    print("response:", response)

Métricas de avaliação de modelo

A Vertex AI retorna várias métricas de avaliação, como limites de precisão, recall e confiança. As métricas retornadas pela Vertex AI dependem do objetivo do seu modelo. Por exemplo, a Vertex AI fornece métricas de avaliação diferentes para um modelo de classificação de imagens em comparação com um modelo de detecção de objetos de imagem.

Um arquivo de esquema determina quais métricas de avaliação a Vertex AI fornece para cada objetivo.

É possível visualizar e fazer o download de arquivos de esquema no seguinte local do Cloud Storage:
gs://google-cloud-aiplatform/schema/modelevaluation/

As métricas de avaliação são as seguintes:

Classificação

  • AuPRC: a área sob a curva de precisão/recall (PR, na sigla em inglês), também conhecida como precisão média. Ela varia de zero a um. Um valor maior indica um modelo de melhor qualidade.
  • AuROC: a área sob a curva de característica de operação do receptor. Ela varia de zero a um. Um valor maior indica um modelo de melhor qualidade.
  • Log Perda: a entropia cruzada entre as predições do modelo e os valores do objetivo. Ela varia de zero a infinito. Um valor menor indica um modelo de melhor qualidade.
  • Limite de confiança: uma pontuação de confiança que determina quais previsões serão retornadas. Um modelo retorna previsões que têm esse valor ou um valor maior. Um limite de confiança maior aumenta a precisão, mas diminui o recall. A Vertex AI retorna métricas de confiança em valores de limite diferentes para mostrar como o limite afeta a precisão e o recall.
  • Recall: a fração de predições com esta classe que o modelo previu corretamente. Também chamado de taxa de verdadeiro positivo.
  • Recall em 1: o recall (taxa de verdadeiro positivo) ao considerar apenas o rótulo que tem a maior pontuação de previsão e não abaixo do limite de confiança de cada exemplo.
  • Precisão: a fração de predições de classificação produzidas pelo modelo que estavam corretas.
  • Precisão em 1: a precisão ao considerar apenas o rótulo que tem a maior pontuação de previsão e não abaixo do limite de confiança de cada exemplo.
  • Pontuação F1: a média harmônica de precisão e recall. F1 é uma métrica útil quando você está procurando um equilíbrio entre precisão e recall e a distribuição de classes é desigual.
  • Pontuação F1 em 1: a média harmônica de recall em 1 e precisão em 1.
  • Contagem de verdadeiro negativo: o número de vezes que um modelo previu corretamente uma classe negativa.
  • Contagem de verdadeiro positivo: o número de vezes que um modelo previu corretamente uma classe positiva.
  • Contagem de falso negativo: o número de vezes que um modelo previu incorretamente uma classe negativa.
  • Contagem de falso positivo: o número de vezes que um modelo previu incorretamente uma classe positiva.
  • Taxa de falso positivo: a fração de resultados previstos incorretamente de todos os resultados previstos.
  • Taxa de falso positivo em 1: a taxa de falso positivo ao considerar apenas o rótulo que tem o maior índice de previsão e não abaixo do limite de confiança de cada exemplo.
  • Matriz de confusão: uma matriz de confusão mostra com que frequência um modelo previu corretamente um resultado. Para resultados previstos incorretamente, a matriz mostra o que o modelo previu. A matriz de confusão ajuda a entender onde o modelo "confunde" dois resultados.
  • Atribuições de recursos de modelo: Vertex AI mostra o quanto cada recurso afeta um modelo. Os valores são fornecidos como uma porcentagem para cada atributo: quanto maior a porcentagem, mais impacto o recurso teve no treinamento do modelo. Analise essas informações para garantir que todos os atributos mais importantes estejam coerentes com os dados e o problema da empresa. Para saber mais, consulte Atribuições de recursos para classificação e regressão.

Regressão

  • MAE: erro médio absoluto (MAE, na sigla em inglês) é a diferença média absoluta entre valores desejados e valores previstos. Essa métrica varia de zero a infinito. Um valor menor indica um modelo de qualidade superior.
  • REMQ: a raiz do erro médio quadrado é a raiz quadrada da diferença média quadrática entre os valores de destino e previstos. A REMQ é mais sensível a outliers do que o MAE. Portanto, se você estiver preocupado com erros grandes, talvez seja mais útil avaliar a REMQ. Assim como no caso do MAE, um valor menor indica um modelo de maior qualidade (0 representa um preditor perfeito).
  • RMSLE: a métrica de raiz do erro médio quadrado e logarítmico é semelhante à RMSE. A diferença é que é usado o logaritmo natural de valores previstos e valores reais mais 1. A RMSLE penaliza com mais intensidade a subestimação do que a superestimação. Esta também pode ser uma boa métrica quando você não quer penalizar as diferenças de grandes valores de previsão com mais intensidade do que para pequenos valores de previsão. Essa métrica varia de zero a infinito. Um valor menor indica um modelo de qualidade superior. A métrica de avaliação RMSLE é retornada somente se todos os rótulos e valores previstos forem não negativos.
  • r^2: r ao quadrado (r^2) é o quadrado do coeficiente de correlação de Pearson entre os rótulos e os valores previstos. A métrica varia de zero a um. Um valor maior indica um ajuste mais próximo da linha de regressão.
  • MAPE: o erro absoluto médio percentual (MAPE, na sigla em inglês) é a diferença percentual absoluta média entre os rótulos e os valores previstos. Esta métrica varia de zero a infinito. Um valor menor indica um modelo de melhor qualidade.
    O MAPE não é exibido se na coluna de destino houver algum valor zero. Nesse caso, o MAPE será indefinido.
  • Atribuições de recursos de modelo: Vertex AI mostra o quanto cada recurso afeta um modelo. Os valores são fornecidos como uma porcentagem para cada atributo: quanto maior a porcentagem, mais impacto o recurso teve no treinamento do modelo. Analise essas informações para garantir que todos os atributos mais importantes estejam coerentes com os dados e o problema da empresa. Para saber mais, consulte Atribuições de recursos para classificação e regressão.

A seguir

Quando estiver pronto para fazer previsões com o modelo de classificação ou regressão, você terá duas opções:

Você também pode: