Mit Sammlungen den Überblick behalten
Sie können Inhalte basierend auf Ihren Einstellungen speichern und kategorisieren.
Sie können bestimmte Funktionen aus einer Feature-Gruppe löschen. Durch das Löschen eines Features wird die Feature-Spalte aus der Feature-Registry abgemeldet. Die Daten in der Spalte in der registrierten BigQuery-Quelltabelle oder ‑ansicht bleiben davon unberührt. Sie können in jeder Featuregruppe ein weiteres Feature erstellen, um bei Bedarf dieselbe Spalte noch einmal zu registrieren.
Hinweise
Authentifizieren Sie sich bei Vertex AI, sofern nicht bereits geschehen.
Verwenden Sie die von der gcloud CLI bereitgestellten Anmeldedaten, um die REST API-Beispiele auf dieser Seite in einer lokalen Entwicklungsumgebung zu verwenden.
Install the Google Cloud CLI.
After installation,
initialize the Google Cloud CLI by running the following command:
[[["Leicht verständlich","easyToUnderstand","thumb-up"],["Mein Problem wurde gelöst","solvedMyProblem","thumb-up"],["Sonstiges","otherUp","thumb-up"]],[["Schwer verständlich","hardToUnderstand","thumb-down"],["Informationen oder Beispielcode falsch","incorrectInformationOrSampleCode","thumb-down"],["Benötigte Informationen/Beispiele nicht gefunden","missingTheInformationSamplesINeed","thumb-down"],["Problem mit der Übersetzung","translationIssue","thumb-down"],["Sonstiges","otherDown","thumb-down"]],["Zuletzt aktualisiert: 2025-09-02 (UTC)."],[],[],null,["# Delete a feature\n\nYou can delete specific features from a feature group. Deleting a feature\nunregisters the feature column from the Feature Registry and\ndoesn't affect the data in the column in the registered BigQuery\nsource table or view. You can [create another feature](/vertex-ai/docs/featurestore/latest/create-feature) in any\nfeature group to register the same column again, if necessary.\n\nBefore you begin\n----------------\n\n\nto\nVertex AI, unless you've done so already.\n\n\nTo use the REST API samples on this page in a local development environment, you use the\ncredentials you provide to the gcloud CLI.\n\n1. [Install](/sdk/docs/install) the Google Cloud CLI. After installation, [initialize](/sdk/docs/initializing) the Google Cloud CLI by running the following command: \n\n```bash\ngcloud init\n```\n2. If you're using an external identity provider (IdP), you must first [sign in to the gcloud CLI with your federated identity](/iam/docs/workforce-log-in-gcloud).\n\n\nFor more information, see\n[Authenticate for using REST](/docs/authentication/rest)\nin the Google Cloud authentication documentation.\n\nDelete a feature\n----------------\n\nUse the following sample to delete a feature from a feature group. \n\n### REST\n\n\nTo delete a [`Feature`](/vertex-ai/docs/reference/rest/v1/projects.locations.featureGroups.features#resource:-feature) resource, send a `DELETE` request by using the\n[features.delete](/vertex-ai/docs/reference/rest/v1/projects.locations.featureGroups.features/delete)\nmethod.\n\n\nBefore using any of the request data,\nmake the following replacements:\n\n- \u003cvar translate=\"no\"\u003eLOCATION_ID\u003c/var\u003e: Region where the feature group is located, such as `us-central1`.\n- \u003cvar translate=\"no\"\u003ePROJECT_ID\u003c/var\u003e: Your project ID.\n- \u003cvar translate=\"no\"\u003eFEATURE_GROUP_NAME\u003c/var\u003e: The name of the feature group containing the feature.\n- \u003cvar translate=\"no\"\u003eFEATURE_NAME\u003c/var\u003e: The name of the feature that you want to delete.\n\n\nHTTP method and URL:\n\n```\nDELETE https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featureGroups/FEATURE_GROUP_NAME/features/FEATURE_NAME\n```\n\nTo send your request, choose one of these options: \n\n#### curl\n\n| **Note:** The following command assumes that you have logged in to the `gcloud` CLI with your user account by running [`gcloud init`](/sdk/gcloud/reference/init) or [`gcloud auth login`](/sdk/gcloud/reference/auth/login) , or by using [Cloud Shell](/shell/docs), which automatically logs you into the `gcloud` CLI . You can check the currently active account by running [`gcloud auth list`](/sdk/gcloud/reference/auth/list).\n\n\nExecute the following command:\n\n```\ncurl -X DELETE \\\n -H \"Authorization: Bearer $(gcloud auth print-access-token)\" \\\n \"https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featureGroups/FEATURE_GROUP_NAME/features/FEATURE_NAME\"\n```\n\n#### PowerShell\n\n| **Note:** The following command assumes that you have logged in to the `gcloud` CLI with your user account by running [`gcloud init`](/sdk/gcloud/reference/init) or [`gcloud auth login`](/sdk/gcloud/reference/auth/login) . You can check the currently active account by running [`gcloud auth list`](/sdk/gcloud/reference/auth/list).\n\n\nExecute the following command:\n\n```\n$cred = gcloud auth print-access-token\n$headers = @{ \"Authorization\" = \"Bearer $cred\" }\n\nInvoke-WebRequest `\n -Method DELETE `\n -Headers $headers `\n -Uri \"https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featureGroups/FEATURE_GROUP_NAME/features/FEATURE_NAME\" | Select-Object -Expand Content\n```\n\nYou should receive a JSON response similar to the following:\n\n```\n\"name\": \"projects/PROJECT_NUMBER/locations/LOCATION_ID/operations/OPERATION_ID\",\n \"metadata\": {\n \"@type\": \"type.googleapis.com/google.cloud.aiplatform.v1.DeleteOperationMetadata\",\n \"genericMetadata\": {\n \"createTime\": \"2023-09-25T18:52:42.092928Z\",\n \"updateTime\": \"2023-09-25T18:52:42.092928Z\"\n }\n },\n \"done\": true,\n \"response\": {\n \"@type\": \"type.googleapis.com/google.protobuf.Empty\"\n }\n}\n```\n\n\u003cbr /\u003e\n\nWhat's next\n-----------\n\n- Learn how to [create a feature](/vertex-ai/docs/featurestore/latest/create-feature).\n\n- Learn how to [update a feature](/vertex-ai/docs/featurestore/latest/update-feature).\n\n- Learn how to [delete a feature group along with its features](/vertex-ai/docs/featurestore/latest/delete-featuregroup)."]]