创建公共端点

如需使用 gcloud CLI 或 Vertex AI API 部署模型,您首先需要创建公开端点

如果您已有现有公共端点,则可以跳过此步骤,直接继续使用 gcloud CLI 或 Vertex AI API 部署模型

本文档介绍了创建新的公开端点的过程。

专用公共端点的默认请求超时时间为 10 分钟。在 Vertex AI API 和 Python 版 Vertex AI SDK 中,您可以选择添加包含新 inferenceTimeout 值的 clientConnectionConfig 对象,以指定不同的请求超时,如以下示例所示。超时值的最大值为 3600 秒(1 小时)。

Google Cloud 控制台

  1. 在 Google Cloud 控制台的 Vertex AI 部分中,前往在线预测页面。
    前往“在线预测”页面
  2. 点击 创建
  3. 新建端点窗格中:
    1. 输入端点名称
    2. 选择标准作为访问权限类型。
    3. 选中启用专用 DNS复选框。
    4. 点击继续
  4. 点击完成

REST

在使用任何请求数据之前,请先进行以下替换:

  • LOCATION_ID:您的区域。
  • PROJECT_ID:您的项目 ID
  • ENDPOINT_NAME:端点的显示名称。
  • INFERENCE_TIMEOUT_SECS:(可选)可选 inferenceTimeout 字段中的秒数。

HTTP 方法和网址:

POST https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/endpoints

请求 JSON 正文:

{
  "display_name": "ENDPOINT_NAME"
  "dedicatedEndpointEnabled": true,
  "clientConnectionConfig": {
    "inferenceTimeout": {
      "seconds": INFERENCE_TIMEOUT_SECS
    }
  }
}

如需发送您的请求,请展开以下选项之一:

您应该收到类似以下内容的 JSON 响应:

{
  "name": "projects/PROJECT_NUMBER/locations/LOCATION_ID/endpoints/ENDPOINT_ID/operations/OPERATION_ID",
  "metadata": {
    "@type": "type.googleapis.com/google.cloud.aiplatform.v1.CreateEndpointOperationMetadata",
    "genericMetadata": {
      "createTime": "2020-11-05T17:45:42.812656Z",
      "updateTime": "2020-11-05T17:45:42.812656Z"
    }
  }
}
您可以轮询操作状态,直到响应包含 "done": true

Python

在尝试此示例之前,请按照《Vertex AI 快速入门:使用客户端库》中的 Python 设置说明执行操作。 如需了解详情,请参阅 Vertex AI Python API 参考文档

如需向 Vertex AI 进行身份验证,请设置应用默认凭据。 如需了解详情,请参阅为本地开发环境设置身份验证

替换以下内容:

  • PROJECT_ID:您的项目 ID。
  • LOCATION_ID:您在其中使用 Vertex AI 的区域。
  • ENDPOINT_NAME:端点的显示名称。
  • INFERENCE_TIMEOUT_SECS:(可选)可选 inference_timeout 值中的秒数。
from google.cloud import aiplatform

PROJECT_ID = "PROJECT_ID"
LOCATION = "LOCATION_ID"
ENDPOINT_NAME = "ENDPOINT_NAME"
INFERENCE_TIMEOUT_SECS = "INFERENCE_TIMEOUT_SECS"

aiplatform.init(
    project=PROJECT_ID,
    location=LOCATION,
    api_endpoint=ENDPOINT_NAME,
)

dedicated_endpoint = aiplatform.Endpoint.create(
    display_name=DISPLAY_NAME,
    dedicated_endpoint_enabled=True,
    sync=True,
    inference_timeout=INFERENCE_TIMEOUT_SECS,
)

创建共享的公共端点

Google Cloud 控制台

  1. 在 Google Cloud 控制台的 Vertex AI 部分中,前往在线预测页面。
    前往“在线预测”页面
  2. 点击 创建
  3. 新建端点窗格中:
    1. 输入端点名称
    2. 选择标准作为访问权限类型。
    3. 点击继续
  4. 点击完成

gcloud

以下示例使用 gcloud ai endpoints create 命令

gcloud ai endpoints create \
    --region=LOCATION_ID \
    --display-name=ENDPOINT_NAME

替换以下内容:

  • LOCATION_ID:您在其中使用 Vertex AI 的区域。
  • ENDPOINT_NAME:端点的显示名称。

Google Cloud CLI 工具可能需要几秒钟才能创建端点。

REST

在使用任何请求数据之前,请先进行以下替换:

  • LOCATION_ID:您的区域。
  • PROJECT_ID:您的项目 ID
  • ENDPOINT_NAME:端点的显示名称。

HTTP 方法和网址:

POST https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/endpoints

请求 JSON 正文:

{
  "display_name": "ENDPOINT_NAME"
}

如需发送您的请求,请展开以下选项之一:

您应该收到类似以下内容的 JSON 响应:

{
  "name": "projects/PROJECT_NUMBER/locations/LOCATION_ID/endpoints/ENDPOINT_ID/operations/OPERATION_ID",
  "metadata": {
    "@type": "type.googleapis.com/google.cloud.aiplatform.v1.CreateEndpointOperationMetadata",
    "genericMetadata": {
      "createTime": "2020-11-05T17:45:42.812656Z",
      "updateTime": "2020-11-05T17:45:42.812656Z"
    }
  }
}
您可以轮询操作状态,直到响应包含 "done": true

Terraform

以下示例使用 google_vertex_ai_endpoint Terraform 资源创建端点。

如需了解如何应用或移除 Terraform 配置,请参阅基本 Terraform 命令

# Endpoint name must be unique for the project
resource "random_id" "endpoint_id" {
  byte_length = 4
}

resource "google_vertex_ai_endpoint" "default" {
  name         = substr(random_id.endpoint_id.dec, 0, 10)
  display_name = "sample-endpoint"
  description  = "A sample Vertex AI endpoint"
  location     = "us-central1"
  labels = {
    label-one = "value-one"
  }
}

Java

在尝试此示例之前,请按照《Vertex AI 快速入门:使用客户端库》中的 Java 设置说明执行操作。 如需了解详情,请参阅 Vertex AI Java API 参考文档

如需向 Vertex AI 进行身份验证,请设置应用默认凭据。 如需了解详情,请参阅为本地开发环境设置身份验证


import com.google.api.gax.longrunning.OperationFuture;
import com.google.cloud.aiplatform.v1.CreateEndpointOperationMetadata;
import com.google.cloud.aiplatform.v1.Endpoint;
import com.google.cloud.aiplatform.v1.EndpointServiceClient;
import com.google.cloud.aiplatform.v1.EndpointServiceSettings;
import com.google.cloud.aiplatform.v1.LocationName;
import java.io.IOException;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.TimeoutException;

public class CreateEndpointSample {

  public static void main(String[] args)
      throws IOException, InterruptedException, ExecutionException, TimeoutException {
    // TODO(developer): Replace these variables before running the sample.
    String project = "YOUR_PROJECT_ID";
    String endpointDisplayName = "YOUR_ENDPOINT_DISPLAY_NAME";
    createEndpointSample(project, endpointDisplayName);
  }

  static void createEndpointSample(String project, String endpointDisplayName)
      throws IOException, InterruptedException, ExecutionException, TimeoutException {
    EndpointServiceSettings endpointServiceSettings =
        EndpointServiceSettings.newBuilder()
            .setEndpoint("us-central1-aiplatform.googleapis.com:443")
            .build();

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (EndpointServiceClient endpointServiceClient =
        EndpointServiceClient.create(endpointServiceSettings)) {
      String location = "us-central1";
      LocationName locationName = LocationName.of(project, location);
      Endpoint endpoint = Endpoint.newBuilder().setDisplayName(endpointDisplayName).build();

      OperationFuture<Endpoint, CreateEndpointOperationMetadata> endpointFuture =
          endpointServiceClient.createEndpointAsync(locationName, endpoint);
      System.out.format("Operation name: %s\n", endpointFuture.getInitialFuture().get().getName());
      System.out.println("Waiting for operation to finish...");
      Endpoint endpointResponse = endpointFuture.get(300, TimeUnit.SECONDS);

      System.out.println("Create Endpoint Response");
      System.out.format("Name: %s\n", endpointResponse.getName());
      System.out.format("Display Name: %s\n", endpointResponse.getDisplayName());
      System.out.format("Description: %s\n", endpointResponse.getDescription());
      System.out.format("Labels: %s\n", endpointResponse.getLabelsMap());
      System.out.format("Create Time: %s\n", endpointResponse.getCreateTime());
      System.out.format("Update Time: %s\n", endpointResponse.getUpdateTime());
    }
  }
}

Node.js

在尝试此示例之前,请按照《Vertex AI 快速入门:使用客户端库》中的 Node.js 设置说明执行操作。 如需了解详情,请参阅 Vertex AI Node.js API 参考文档

如需向 Vertex AI 进行身份验证,请设置应用默认凭据。 如需了解详情,请参阅为本地开发环境设置身份验证

/**
 * TODO(developer): Uncomment these variables before running the sample.\
 * (Not necessary if passing values as arguments)
 */

// const endpointDisplayName = 'YOUR_ENDPOINT_DISPLAY_NAME';
// const project = 'YOUR_PROJECT_ID';
// const location = 'YOUR_PROJECT_LOCATION';

// Imports the Google Cloud Endpoint Service Client library
const {EndpointServiceClient} = require('@google-cloud/aiplatform');

// Specifies the location of the api endpoint
const clientOptions = {
  apiEndpoint: 'us-central1-aiplatform.googleapis.com',
};

// Instantiates a client
const endpointServiceClient = new EndpointServiceClient(clientOptions);

async function createEndpoint() {
  // Configure the parent resource
  const parent = `projects/${project}/locations/${location}`;
  const endpoint = {
    displayName: endpointDisplayName,
  };
  const request = {
    parent,
    endpoint,
  };

  // Get and print out a list of all the endpoints for this resource
  const [response] = await endpointServiceClient.createEndpoint(request);
  console.log(`Long running operation : ${response.name}`);

  // Wait for operation to complete
  await response.promise();
  const result = response.result;

  console.log('Create endpoint response');
  console.log(`\tName : ${result.name}`);
  console.log(`\tDisplay name : ${result.displayName}`);
  console.log(`\tDescription : ${result.description}`);
  console.log(`\tLabels : ${JSON.stringify(result.labels)}`);
  console.log(`\tCreate time : ${JSON.stringify(result.createTime)}`);
  console.log(`\tUpdate time : ${JSON.stringify(result.updateTime)}`);
}
createEndpoint();

Python 版 Vertex AI SDK

如需了解如何安装或更新 Vertex AI SDK for Python,请参阅安装 Vertex AI SDK for Python。 如需了解详情,请参阅 Python 版 Vertex AI SDK API 参考文档

def create_endpoint_sample(
    project: str,
    display_name: str,
    location: str,
):
    aiplatform.init(project=project, location=location)

    endpoint = aiplatform.Endpoint.create(
        display_name=display_name,
        project=project,
        location=location,
    )

    print(endpoint.display_name)
    print(endpoint.resource_name)
    return endpoint

后续步骤