エンティティ タイプを作成、一覧表示、削除する方法について説明します。
エンティティ タイプを作成する
関連する特徴を作成できるように、エンティティ タイプを作成します。
ウェブ UI
- Google Cloud コンソールの [Vertex AI] セクションで、[特徴] ページに移動します。
- アクションバーで [エンティティ タイプを作成] をクリックし、[エンティティ タイプの作成] ペインを開きます。
- エンティティ タイプを作成する featurestore を含むリージョンを [リージョン] プルダウン リストから選択します。
- featurestore を選択します。
- エンティティ タイプの名前を指定します。
- エンティティ タイプに説明を付ける場合は、説明を入力します。
- 特徴値モニタリング(プレビュー)を有効にするには、モニタリングを [有効] に設定してから、スナップショット間隔を日数で指定します。このモニタリング構成は、このエンティティ タイプのすべての特徴に適用されます。詳細については、特徴値モニタリングをご覧ください。
- [作成] をクリックします。
Terraform
次のサンプルでは、新しい featurestore を作成し、google_vertex_ai_featurestore_entitytype
Terraform リソースを使用してその Feature Store 内に featurestore_entitytype
という名前のエンティティ タイプを作成します。
Terraform 構成を適用または削除する方法については、基本的な Terraform コマンドをご覧ください。
REST
エンティティ タイプを作成するには、featurestores.entityTypes.create メソッドを使用して POST リクエストを送信します。
リクエストのデータを使用する前に、次のように置き換えます。
- LOCATION_ID: featurestore が配置されているリージョン(
us-central1
など)。 - PROJECT_ID: 実際のプロジェクト ID。
- FEATURESTORE_ID: featurestore の ID。
- ENTITY_TYPE_ID: エンティティ タイプの ID。
- DESCRIPTION: エンティティ タイプの説明。
HTTP メソッドと URL:
POST https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes?entityTypeId=ENTITY_TYPE_ID
リクエストの本文(JSON):
{ "description": "DESCRIPTION" }
リクエストを送信するには、次のいずれかのオプションを選択します。
curl
リクエスト本文を request.json
という名前のファイルに保存して、次のコマンドを実行します。
curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes?entityTypeId=ENTITY_TYPE_ID"
PowerShell
リクエスト本文を request.json
という名前のファイルに保存して、次のコマンドを実行します。
$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }
Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes?entityTypeId=ENTITY_TYPE_ID" | Select-Object -Expand Content
出力は次のようになります。レスポンスの OPERATION_ID を使用して、オペレーションのステータスを取得できます。
{ "name": "projects/PROJECT_NUMBER/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/bikes/operations/OPERATION_ID", "metadata": { "@type": "type.googleapis.com/google.cloud.aiplatform.v1.CreateEntityTypeOperationMetadata", "genericMetadata": { "createTime": "2021-03-02T00:04:13.039166Z", "updateTime": "2021-03-02T00:04:13.039166Z" } } }
Python
Vertex AI SDK for Python のインストールまたは更新の方法については、Vertex AI SDK for Python をインストールするをご覧ください。 詳細については、Python API リファレンス ドキュメントをご覧ください。
Java
このサンプルを試す前に、Vertex AI クイックスタート: クライアント ライブラリの使用にある Java の設定手順を完了してください。詳細については、Vertex AI Java API のリファレンス ドキュメントをご覧ください。
Vertex AI に対する認証を行うには、アプリケーションのデフォルト認証情報を設定します。詳細については、ローカル開発環境の認証を設定するをご覧ください。
Node.js
このサンプルを試す前に、Vertex AI クイックスタート: クライアント ライブラリの使用にある Node.js の設定手順を完了してください。詳細については、Vertex AI Node.js API のリファレンス ドキュメントをご覧ください。
Vertex AI に対する認証を行うには、アプリケーションのデフォルト認証情報を設定します。詳細については、ローカル開発環境の認証を設定するをご覧ください。
エンティティ タイプの一覧表示
featurestore 内のすべてのエンティティ タイプを一覧表示します。
ウェブ UI
- Google Cloud コンソールの [Vertex AI] セクションで、[特徴] ページに移動します。
- [リージョン] プルダウン リストからリージョンを選択します。
- 特徴テーブルの [エンティティ タイプ] 列で、選択したリージョンのプロジェクトのエンティティ タイプを確認します。
REST
エンティティ タイプを一覧表示するには、featurestores.entityTypes.list メソッドを使用して GET リクエストを送信します。
リクエストのデータを使用する前に、次のように置き換えます。
- LOCATION_ID: featurestore が配置されているリージョン(
us-central1
など)。 - PROJECT_ID: 実際のプロジェクト ID。
- FEATURESTORE_ID: featurestore の ID。
HTTP メソッドと URL:
GET https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes
リクエストを送信するには、次のいずれかのオプションを選択します。
curl
次のコマンドを実行します。
curl -X GET \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
"https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes"
PowerShell
次のコマンドを実行します。
$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }
Invoke-WebRequest `
-Method GET `
-Headers $headers `
-Uri "https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes" | Select-Object -Expand Content
次のような JSON レスポンスが返されます。
{ "entityTypes": [ { "name": "projects/PROJECT_NUMBER/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID_1", "description": "ENTITY_TYPE_DESCRIPTION", "createTime": "2021-02-25T01:20:43.082628Z", "updateTime": "2021-02-25T01:20:43.082628Z", "etag": "AMEw9yOBqKIdbBGZcxdKLrlZJAf9eTO2DEzcE81YDKA2LymDMFB8ucRbmKwKo2KnvOg=" }, { "name": "projects/PROJECT_NUMBER/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID_2", "description": "ENTITY_TYPE_DESCRIPTION", "createTime": "2021-02-25T01:34:26.198628Z", "updateTime": "2021-02-25T01:34:26.198628Z", "etag": "AMEw9yNuv-ILYG8VLLm1lgIKc7asGIAVFErjvH2Cyc_wIQm7d6DL4ZGv59cwZmxTumU=" } ] }
Java
このサンプルを試す前に、Vertex AI クイックスタート: クライアント ライブラリの使用にある Java の設定手順を完了してください。詳細については、Vertex AI Java API のリファレンス ドキュメントをご覧ください。
Vertex AI に対する認証を行うには、アプリケーションのデフォルト認証情報を設定します。詳細については、ローカル開発環境の認証を設定するをご覧ください。
Node.js
このサンプルを試す前に、Vertex AI クイックスタート: クライアント ライブラリの使用にある Node.js の設定手順を完了してください。詳細については、Vertex AI Node.js API のリファレンス ドキュメントをご覧ください。
Vertex AI に対する認証を行うには、アプリケーションのデフォルト認証情報を設定します。詳細については、ローカル開発環境の認証を設定するをご覧ください。
その他の言語
Vertex AI SDK for Python をインストールして使用する方法については、Vertex AI SDK for Python を使用するをご覧ください。詳細については、Vertex AI SDK for Python API のリファレンス ドキュメントをご覧ください。
エンティティ タイプを削除する
エンティティ タイプを削除します。Google Cloud コンソールを使用する場合、Vertex AI Feature Store(レガシー)によってエンティティ タイプとすべてのコンテンツが削除されます。API を使用する場合は、force
クエリ パラメータを有効にして、エンティティ タイプとその内容をすべて削除します。
ウェブ UI
- Google Cloud コンソールの [Vertex AI] セクションで、[特徴] ページに移動します。
- [リージョン] プルダウン リストからリージョンを選択します。
- 特徴テーブルの [エンティティ タイプ] 列で、削除するエンティティ タイプを見つけます。
- エンティティ タイプの名前をクリックします。
- アクションバーで [削除] をクリックします。
- [確認] をクリックして、エンティティ タイプを削除します。
REST
エンティティ タイプを削除するには、featurestores.entityTypes.delete メソッドを使用して DELETE リクエストを送信します。
リクエストのデータを使用する前に、次のように置き換えます。
- LOCATION_ID: featurestore が配置されているリージョン(
us-central1
など)。 - PROJECT_ID: 実際のプロジェクト ID。
- FEATURESTORE_ID: featurestore の ID。
- ENTITY_TYPE_ID: エンティティ タイプの ID。
- BOOLEAN: 特徴が含まれている場合でもエンティティ タイプを削除するかどうか。
force
クエリ パラメータは省略可能です。デフォルトではfalse
です。
HTTP メソッドと URL:
DELETE https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID?force=BOOLEAN
リクエストを送信するには、次のいずれかのオプションを選択します。
curl
次のコマンドを実行します。
curl -X DELETE \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
"https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID?force=BOOLEAN"
PowerShell
次のコマンドを実行します。
$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }
Invoke-WebRequest `
-Method DELETE `
-Headers $headers `
-Uri "https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID?force=BOOLEAN" | Select-Object -Expand Content
次のような JSON レスポンスが返されます。
{ "name": "projects/PROJECT_NUMBER/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/operations/OPERATION_ID", "metadata": { "@type": "type.googleapis.com/google.cloud.aiplatform.v1.DeleteOperationMetadata", "genericMetadata": { "createTime": "2021-02-26T17:32:56.008325Z", "updateTime": "2021-02-26T17:32:56.008325Z" } }, "done": true, "response": { "@type": "type.googleapis.com/google.protobuf.Empty" } }
Java
このサンプルを試す前に、Vertex AI クイックスタート: クライアント ライブラリの使用にある Java の設定手順を完了してください。詳細については、Vertex AI Java API のリファレンス ドキュメントをご覧ください。
Vertex AI に対する認証を行うには、アプリケーションのデフォルト認証情報を設定します。詳細については、ローカル開発環境の認証を設定するをご覧ください。
Node.js
このサンプルを試す前に、Vertex AI クイックスタート: クライアント ライブラリの使用にある Node.js の設定手順を完了してください。詳細については、Vertex AI Node.js API のリファレンス ドキュメントをご覧ください。
Vertex AI に対する認証を行うには、アプリケーションのデフォルト認証情報を設定します。詳細については、ローカル開発環境の認証を設定するをご覧ください。
その他の言語
Vertex AI SDK for Python をインストールして使用する方法については、Vertex AI SDK for Python を使用するをご覧ください。詳細については、Vertex AI SDK for Python API のリファレンス ドキュメントをご覧ください。
次のステップ
- 特徴の管理方法を確認する。
- インポートされた特徴値を時間をかけてモニタリングする方法を学習する。
- Vertex AI Feature Store(レガシー)のエンティティ タイプの割り当てを確認する。
- Vertex AI Feature Store(従来版)に関する一般的な問題のトラブルシューティングを行う。