Menggunakan Count Tokens API

Halaman ini menunjukkan cara mendapatkan jumlah token dan jumlah karakter yang dapat ditagih untuk sebuah perintah menggunakan countTokens API.

Model yang didukung

Model multimodal berikut mendukung perolehan estimasi jumlah token prompt:

Untuk mempelajari versi model lebih lanjut, lihat Versi dan siklus proses model Gemini.

Mendapatkan jumlah token untuk prompt

Anda bisa mendapatkan estimasi jumlah token dan jumlah karakter yang dapat ditagih untuk permintaan menggunakan Vertex AI API.

Konsol

Untuk mendapatkan jumlah token untuk perintah menggunakan Vertex AI Studio di konsolGoogle Cloud , lakukan langkah-langkah berikut:

  1. Di bagian Vertex AI pada Google Cloud konsol, buka halaman Vertex AI Studio.

    Buka Vertex AI Studio

  2. Klik Buka Bentuk Bebas atau Buka Chat.
  3. Jumlah token dihitung dan ditampilkan saat Anda mengetik di panel Perintah. Ini mencakup jumlah token dalam file input apa pun.
  4. Untuk melihat detail selengkapnya, klik <count> token untuk membuka Pemisah token perintah.
    • Untuk melihat token dalam perintah teks yang ditandai dengan warna berbeda yang menandai batas setiap ID token, klik Token ID to text. Token media tidak didukung.
    • Untuk melihat ID token, klik ID Token.

      Untuk menutup panel alat pemisah kata, klik X, atau klik di luar panel.

Gen AI SDK for Python

Instal

pip install --upgrade google-genai

Untuk mempelajari lebih lanjut, lihat dokumentasi referensi SDK.

Tetapkan variabel lingkungan untuk menggunakan Gen AI SDK dengan Vertex AI:

# Replace the `GOOGLE_CLOUD_PROJECT` and `GOOGLE_CLOUD_LOCATION` values
# with appropriate values for your project.
export GOOGLE_CLOUD_PROJECT=GOOGLE_CLOUD_PROJECT
export GOOGLE_CLOUD_LOCATION=global
export GOOGLE_GENAI_USE_VERTEXAI=True

from google import genai
from google.genai.types import HttpOptions

client = genai.Client(http_options=HttpOptions(api_version="v1"))
response = client.models.count_tokens(
    model="gemini-2.0-flash-001",
    contents="What's the highest mountain in Africa?",
)
print(response)
# Example output:
# total_tokens=10
# cached_content_token_count=None

Gen AI SDK for Go

Pelajari cara menginstal atau mengupdate Gen AI SDK for Go.

Untuk mempelajari lebih lanjut, lihat dokumentasi referensi SDK.

Tetapkan variabel lingkungan untuk menggunakan Gen AI SDK dengan Vertex AI:

# Replace the `GOOGLE_CLOUD_PROJECT` and `GOOGLE_CLOUD_LOCATION` values
# with appropriate values for your project.
export GOOGLE_CLOUD_PROJECT=GOOGLE_CLOUD_PROJECT
export GOOGLE_CLOUD_LOCATION=global
export GOOGLE_GENAI_USE_VERTEXAI=True

import (
	"context"
	"fmt"
	"io"

	genai "google.golang.org/genai"
)

// countWithTxt shows how to count tokens with text input.
func countWithTxt(w io.Writer) error {
	ctx := context.Background()

	client, err := genai.NewClient(ctx, &genai.ClientConfig{
		HTTPOptions: genai.HTTPOptions{APIVersion: "v1"},
	})
	if err != nil {
		return fmt.Errorf("failed to create genai client: %w", err)
	}

	modelName := "gemini-2.0-flash-001"
	contents := []*genai.Content{
		{Parts: []*genai.Part{
			{Text: "What's the highest mountain in Africa?"},
		}},
	}

	resp, err := client.Models.CountTokens(ctx, modelName, contents, nil)
	if err != nil {
		return fmt.Errorf("failed to generate content: %w", err)
	}

	fmt.Fprintf(w, "Total: %d\nCached: %d\n", resp.TotalTokens, resp.CachedContentTokenCount)

	// Example response:
	// Total: 9
	// Cached: 0

	return nil
}
const {VertexAI} = require('@google-cloud/vertexai');

/**
 * TODO(developer): Update these variables before running the sample.
 */
async function countTokens(
  projectId = 'PROJECT_ID',
  location = 'us-central1',
  model = 'gemini-2.0-flash-001'
) {
  // Initialize Vertex with your Cloud project and location
  const vertexAI = new VertexAI({project: projectId, location: location});

  // Instantiate the model
  const generativeModel = vertexAI.getGenerativeModel({
    model: model,
  });

  const req = {
    contents: [{role: 'user', parts: [{text: 'How are you doing today?'}]}],
  };

  // Prompt tokens count
  const countTokensResp = await generativeModel.countTokens(req);
  console.log('Prompt tokens count: ', countTokensResp);

  // Send text to gemini
  const result = await generativeModel.generateContent(req);

  // Response tokens count
  const usageMetadata = result.response.usageMetadata;
  console.log('Response tokens count: ', usageMetadata);
}
import com.google.cloud.vertexai.VertexAI;
import com.google.cloud.vertexai.api.CountTokensResponse;
import com.google.cloud.vertexai.api.GenerateContentResponse;
import com.google.cloud.vertexai.generativeai.GenerativeModel;
import java.io.IOException;

public class GetTokenCount {
  public static void main(String[] args) throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "your-google-cloud-project-id";
    String location = "us-central1";
    String modelName = "gemini-2.0-flash-001";

    getTokenCount(projectId, location, modelName);
  }

  // Gets the number of tokens for the prompt and the model's response.
  public static int getTokenCount(String projectId, String location, String modelName)
      throws IOException {
    // Initialize client that will be used to send requests.
    // This client only needs to be created once, and can be reused for multiple requests.
    try (VertexAI vertexAI = new VertexAI(projectId, location)) {
      GenerativeModel model = new GenerativeModel(modelName, vertexAI);

      String textPrompt = "Why is the sky blue?";
      CountTokensResponse response = model.countTokens(textPrompt);

      int promptTokenCount = response.getTotalTokens();
      int promptCharCount = response.getTotalBillableCharacters();

      System.out.println("Prompt token Count: " + promptTokenCount);
      System.out.println("Prompt billable character count: " + promptCharCount);

      GenerateContentResponse contentResponse = model.generateContent(textPrompt);

      int tokenCount = contentResponse.getUsageMetadata().getPromptTokenCount();
      int candidateTokenCount = contentResponse.getUsageMetadata().getCandidatesTokenCount();
      int totalTokenCount = contentResponse.getUsageMetadata().getTotalTokenCount();

      System.out.println("Prompt token Count: " + tokenCount);
      System.out.println("Candidate Token Count: " + candidateTokenCount);
      System.out.println("Total token Count: " + totalTokenCount);

      return promptTokenCount;
    }
  }
}

REST

Guna mendapatkan jumlah token dan jumlah karakter yang dapat ditagih untuk permintaan dengan menggunakan Vertex AI API, kirim permintaan POST ke endpoint model penayang.

Sebelum menggunakan salah satu data permintaan, lakukan penggantian berikut:

  • LOCATION: Region untuk memproses permintaan. Opsi yang tersedia mencakup hal berikut:

    Klik untuk meluaskan sebagian daftar region yang tersedia

    • us-central1
    • us-west4
    • northamerica-northeast1
    • us-east4
    • us-west1
    • asia-northeast3
    • asia-southeast1
    • asia-northeast1
  • PROJECT_ID: Project ID Anda.
  • MODEL_ID: ID model model multimodal yang ingin Anda gunakan.
  • ROLE: Peran dalam percakapan yang terkait dengan konten. Menentukan peran diperlukan bahkan dalam kasus penggunaan satu giliran. Nilai yang dapat diterima mencakup hal berikut:
    • USER: Menentukan konten yang dikirim oleh Anda.
  • TEXT: Petunjuk teks yang akan disertakan dalam perintah.

Metode HTTP dan URL:

POST https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/publishers/google/models/MODEL_ID:countTokens

Isi JSON permintaan:

{
  "contents": [{
    "role": "ROLE",
    "parts": [{
      "text": "TEXT"
    }]
  }]
}

Untuk mengirim permintaan Anda, pilih salah satu opsi berikut:

curl

Simpan isi permintaan dalam file bernama request.json, dan jalankan perintah berikut:

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/publishers/google/models/MODEL_ID:countTokens"

PowerShell

Simpan isi permintaan dalam file bernama request.json, dan jalankan perintah berikut:

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/publishers/google/models/MODEL_ID:countTokens" | Select-Object -Expand Content

Anda akan melihat respons JSON yang mirip seperti berikut:

Contoh untuk teks dengan gambar atau video:

Gen AI SDK for Python

Instal

pip install --upgrade google-genai

Untuk mempelajari lebih lanjut, lihat dokumentasi referensi SDK.

Tetapkan variabel lingkungan untuk menggunakan Gen AI SDK dengan Vertex AI:

# Replace the `GOOGLE_CLOUD_PROJECT` and `GOOGLE_CLOUD_LOCATION` values
# with appropriate values for your project.
export GOOGLE_CLOUD_PROJECT=GOOGLE_CLOUD_PROJECT
export GOOGLE_CLOUD_LOCATION=global
export GOOGLE_GENAI_USE_VERTEXAI=True

from google import genai
from google.genai.types import HttpOptions, Part

client = genai.Client(http_options=HttpOptions(api_version="v1"))

contents = [
    Part.from_uri(
        file_uri="gs://cloud-samples-data/generative-ai/video/pixel8.mp4",
        mime_type="video/mp4",
    ),
    "Provide a description of the video.",
]

response = client.models.count_tokens(
    model="gemini-2.0-flash-001",
    contents=contents,
)
print(response)
# Example output:
# total_tokens=16252 cached_content_token_count=None

Gen AI SDK for Go

Pelajari cara menginstal atau mengupdate Gen AI SDK for Go.

Untuk mempelajari lebih lanjut, lihat dokumentasi referensi SDK.

Tetapkan variabel lingkungan untuk menggunakan Gen AI SDK dengan Vertex AI:

# Replace the `GOOGLE_CLOUD_PROJECT` and `GOOGLE_CLOUD_LOCATION` values
# with appropriate values for your project.
export GOOGLE_CLOUD_PROJECT=GOOGLE_CLOUD_PROJECT
export GOOGLE_CLOUD_LOCATION=global
export GOOGLE_GENAI_USE_VERTEXAI=True

import (
	"context"
	"fmt"
	"io"

	genai "google.golang.org/genai"
)

// countWithTxtAndVid shows how to count tokens with text and video inputs.
func countWithTxtAndVid(w io.Writer) error {
	ctx := context.Background()

	client, err := genai.NewClient(ctx, &genai.ClientConfig{
		HTTPOptions: genai.HTTPOptions{APIVersion: "v1"},
	})
	if err != nil {
		return fmt.Errorf("failed to create genai client: %w", err)
	}

	modelName := "gemini-2.0-flash-001"
	contents := []*genai.Content{
		{Parts: []*genai.Part{
			{Text: "Provide a description of the video."},
			{FileData: &genai.FileData{
				FileURI:  "gs://cloud-samples-data/generative-ai/video/pixel8.mp4",
				MIMEType: "video/mp4",
			}},
		}},
	}

	resp, err := client.Models.CountTokens(ctx, modelName, contents, nil)
	if err != nil {
		return fmt.Errorf("failed to generate content: %w", err)
	}

	fmt.Fprintf(w, "Total: %d\nCached: %d\n", resp.TotalTokens, resp.CachedContentTokenCount)

	// Example response:
	// Total: 16252
	// Cached: 0

	return nil
}
const {VertexAI} = require('@google-cloud/vertexai');

/**
 * TODO(developer): Update these variables before running the sample.
 */
async function countTokens(
  projectId = 'PROJECT_ID',
  location = 'us-central1',
  model = 'gemini-2.0-flash-001'
) {
  // Initialize Vertex with your Cloud project and location
  const vertexAI = new VertexAI({project: projectId, location: location});

  // Instantiate the model
  const generativeModel = vertexAI.getGenerativeModel({
    model: model,
  });

  const req = {
    contents: [
      {
        role: 'user',
        parts: [
          {
            file_data: {
              file_uri:
                'gs://cloud-samples-data/generative-ai/video/pixel8.mp4',
              mime_type: 'video/mp4',
            },
          },
          {text: 'Provide a description of the video.'},
        ],
      },
    ],
  };

  const countTokensResp = await generativeModel.countTokens(req);
  console.log('Prompt Token Count:', countTokensResp.totalTokens);
  console.log(
    'Prompt Character Count:',
    countTokensResp.totalBillableCharacters
  );

  // Sent text to Gemini
  const result = await generativeModel.generateContent(req);
  const usageMetadata = result.response.usageMetadata;

  console.log('Prompt Token Count:', usageMetadata.promptTokenCount);
  console.log('Candidates Token Count:', usageMetadata.candidatesTokenCount);
  console.log('Total Token Count:', usageMetadata.totalTokenCount);
}
import com.google.cloud.vertexai.VertexAI;
import com.google.cloud.vertexai.api.Content;
import com.google.cloud.vertexai.api.CountTokensResponse;
import com.google.cloud.vertexai.generativeai.ContentMaker;
import com.google.cloud.vertexai.generativeai.GenerativeModel;
import com.google.cloud.vertexai.generativeai.PartMaker;
import java.io.IOException;

public class GetMediaTokenCount {
  public static void main(String[] args) throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "your-google-cloud-project-id";
    String location = "us-central1";
    String modelName = "gemini-2.0-flash-001";

    getMediaTokenCount(projectId, location, modelName);
  }

  // Gets the number of tokens for the prompt with text and video and the model's response.
  public static int getMediaTokenCount(String projectId, String location, String modelName)
      throws IOException {
    // Initialize client that will be used to send requests.
    // This client only needs to be created once, and can be reused for multiple requests.
    try (VertexAI vertexAI = new VertexAI(projectId, location)) {
      GenerativeModel model = new GenerativeModel(modelName, vertexAI);

      Content content = ContentMaker.fromMultiModalData(
          "Provide a description of the video.",
          PartMaker.fromMimeTypeAndData(
              "video/mp4", "gs://cloud-samples-data/generative-ai/video/pixel8.mp4")
      );

      CountTokensResponse response = model.countTokens(content);

      int tokenCount = response.getTotalTokens();
      System.out.println("Token count: " + tokenCount);

      return tokenCount;
    }
  }
}

REST

Guna mendapatkan jumlah token dan jumlah karakter yang dapat ditagih untuk permintaan dengan menggunakan Vertex AI API, kirim permintaan POST ke endpoint model penayang.

MODEL_ID="gemini-2.0-flash-001"
PROJECT_ID="my-project"
TEXT="Provide a summary with about two sentences for the following article."
REGION="us-central1"

curl \
-X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json" \
https://${REGION}-aiplatform.googleapis.com/v1/projects/${PROJECT_ID}/locations/${REGION}/publishers/google/models/${MODEL_ID}:countTokens -d \
$'{
    "contents": [{
      "role": "user",
      "parts": [
        {
          "file_data": {
            "file_uri": "gs://cloud-samples-data/generative-ai/video/pixel8.mp4",
            "mime_type": "video/mp4"
          }
        },
        {
          "text": "'"$TEXT"'"
        }]
    }]
 }'

Harga dan kuota

Penggunaan CountTokens API tidak dikenai biaya atau batasan kuota. Kuota maksimum untuk CountTokens API adalah 3.000 permintaan per menit.

Langkah berikutnya