Menggunakan Count Tokens API

Halaman ini menunjukkan cara mendapatkan jumlah token dan jumlah karakter yang dapat ditagih untuk sebuah prompt menggunakan countTokens API.

Model yang didukung

Model multimodal berikut mendukung perolehan perkiraan jumlah token prompt:

Untuk mempelajari versi model lebih lanjut, lihat Versi dan siklus proses model Gemini.

Mendapatkan jumlah token untuk prompt

Anda bisa mendapatkan perkiraan jumlah token dan jumlah karakter yang dapat ditagih untuk sebuah permintaan menggunakan Vertex AI API.

Konsol

Untuk mendapatkan jumlah token untuk perintah menggunakan Vertex AI Studio di konsolGoogle Cloud , lakukan langkah-langkah berikut:

  1. Di bagian Vertex AI pada konsol Google Cloud , buka halaman Vertex AI Studio.

    Buka Vertex AI Studio

  2. Klik Buka Bentuk Bebas atau Buka Chat.
  3. Jumlah token dihitung dan ditampilkan saat Anda mengetik di panel Perintah. Jumlah ini mencakup jumlah token dalam file input apa pun.
  4. Untuk melihat detail selengkapnya, klik <count> token untuk membuka Pengtokenisasi perintah.
    • Untuk melihat token dalam perintah teks yang ditandai dengan warna berbeda yang menandai batas setiap ID token, klik ID token ke teks. Token media tidak didukung.
    • Untuk melihat ID token, klik ID Token.

      Untuk menutup panel alat tokenizer, klik X, atau klik di luar panel.

Gen AI SDK for Python

Instal

pip install --upgrade google-genai

Untuk mempelajari lebih lanjut, lihat dokumentasi referensi SDK.

Tetapkan variabel lingkungan untuk menggunakan Gen AI SDK dengan Vertex AI:

# Replace the `GOOGLE_CLOUD_PROJECT` and `GOOGLE_CLOUD_LOCATION` values
# with appropriate values for your project.
export GOOGLE_CLOUD_PROJECT=GOOGLE_CLOUD_PROJECT
export GOOGLE_CLOUD_LOCATION=global
export GOOGLE_GENAI_USE_VERTEXAI=True

from google import genai
from google.genai.types import HttpOptions

client = genai.Client(http_options=HttpOptions(api_version="v1"))
response = client.models.count_tokens(
    model="gemini-2.5-flash",
    contents="What's the highest mountain in Africa?",
)
print(response)
# Example output:
# total_tokens=10
# cached_content_token_count=None

Gen AI SDK for Go

Pelajari cara menginstal atau mengupdate Gen AI SDK for Go.

Untuk mempelajari lebih lanjut, lihat dokumentasi referensi SDK.

Tetapkan variabel lingkungan untuk menggunakan Gen AI SDK dengan Vertex AI:

# Replace the `GOOGLE_CLOUD_PROJECT` and `GOOGLE_CLOUD_LOCATION` values
# with appropriate values for your project.
export GOOGLE_CLOUD_PROJECT=GOOGLE_CLOUD_PROJECT
export GOOGLE_CLOUD_LOCATION=global
export GOOGLE_GENAI_USE_VERTEXAI=True

import (
	"context"
	"fmt"
	"io"

	genai "google.golang.org/genai"
)

// countWithTxt shows how to count tokens with text input.
func countWithTxt(w io.Writer) error {
	ctx := context.Background()

	client, err := genai.NewClient(ctx, &genai.ClientConfig{
		HTTPOptions: genai.HTTPOptions{APIVersion: "v1"},
	})
	if err != nil {
		return fmt.Errorf("failed to create genai client: %w", err)
	}

	modelName := "gemini-2.0-flash-001"
	contents := []*genai.Content{
		{Parts: []*genai.Part{
			{Text: "What's the highest mountain in Africa?"},
		}},
	}

	resp, err := client.Models.CountTokens(ctx, modelName, contents, nil)
	if err != nil {
		return fmt.Errorf("failed to generate content: %w", err)
	}

	fmt.Fprintf(w, "Total: %d\nCached: %d\n", resp.TotalTokens, resp.CachedContentTokenCount)

	// Example response:
	// Total: 9
	// Cached: 0

	return nil
}

Gen AI SDK for Node.js

Instal

npm install @google/genai

Untuk mempelajari lebih lanjut, lihat dokumentasi referensi SDK.

Tetapkan variabel lingkungan untuk menggunakan Gen AI SDK dengan Vertex AI:

# Replace the `GOOGLE_CLOUD_PROJECT` and `GOOGLE_CLOUD_LOCATION` values
# with appropriate values for your project.
export GOOGLE_CLOUD_PROJECT=GOOGLE_CLOUD_PROJECT
export GOOGLE_CLOUD_LOCATION=global
export GOOGLE_GENAI_USE_VERTEXAI=True

const {GoogleGenAI} = require('@google/genai');

const GOOGLE_CLOUD_PROJECT = process.env.GOOGLE_CLOUD_PROJECT;
const GOOGLE_CLOUD_LOCATION = process.env.GOOGLE_CLOUD_LOCATION || 'global';

async function countTokens(
  projectId = GOOGLE_CLOUD_PROJECT,
  location = GOOGLE_CLOUD_LOCATION
) {
  const ai = new GoogleGenAI({
    vertexai: true,
    project: projectId,
    location: location,
  });

  const response = await ai.models.countTokens({
    model: 'gemini-2.0-flash',
    contents: 'What is the highest mountain in Africa?',
  });

  console.log(response);

  return response.totalTokens;
}

Gen AI SDK for Java

Pelajari cara menginstal atau mengupdate Gen AI SDK for Java.

Untuk mempelajari lebih lanjut, lihat dokumentasi referensi SDK.

Tetapkan variabel lingkungan untuk menggunakan Gen AI SDK dengan Vertex AI:

# Replace the `GOOGLE_CLOUD_PROJECT` and `GOOGLE_CLOUD_LOCATION` values
# with appropriate values for your project.
export GOOGLE_CLOUD_PROJECT=GOOGLE_CLOUD_PROJECT
export GOOGLE_CLOUD_LOCATION=global
export GOOGLE_GENAI_USE_VERTEXAI=True


import com.google.genai.Client;
import com.google.genai.types.Content;
import com.google.genai.types.CountTokensResponse;
import com.google.genai.types.HttpOptions;
import com.google.genai.types.Part;
import java.util.List;
import java.util.Optional;

public class CountTokensWithText {

  public static void main(String[] args) {
    // TODO(developer): Replace these variables before running the sample.
    String modelId = "gemini-2.0-flash";
    countTokens(modelId);
  }

  public static Optional<Integer> countTokens(String modelId) {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests.
    try (Client client = Client.builder()
        .httpOptions(HttpOptions.builder().apiVersion("v1").build())
        .build()) {

      Content content = Content.builder()
          .parts(List.of(
              Part.fromText("What's the highest mountain in Africa?")))
          .build();

      CountTokensResponse response =
          client.models.countTokens(modelId, List.of(content), null);

      System.out.print(response);
      // Example response:
      // CountTokensResponse{totalTokens=Optional[9], cachedContentTokenCount=Optional.empty}
      return response.totalTokens();
    }
  }
}

REST

Guna mendapatkan jumlah token dan jumlah karakter yang dapat ditagih untuk permintaan dengan menggunakan Vertex AI API, kirim permintaan POST ke endpoint model penayang.

Sebelum menggunakan salah satu data permintaan, lakukan penggantian berikut:

  • LOCATION: Region untuk memproses permintaan. Opsi yang tersedia meliputi:

    Klik untuk meluaskan daftar sebagian wilayah yang tersedia

    • us-central1
    • us-west4
    • northamerica-northeast1
    • us-east4
    • us-west1
    • asia-northeast3
    • asia-southeast1
    • asia-northeast1
  • PROJECT_ID: Project ID Anda.
  • MODEL_ID: ID model multimodal yang ingin Anda gunakan.
  • ROLE: Peran dalam percakapan yang terkait dengan konten. Menentukan peran diperlukan bahkan dalam kasus penggunaan sekali putaran. Nilai yang dapat diterima mencakup hal berikut:
    • USER: Menentukan konten yang dikirim oleh Anda.
  • TEXT: Petunjuk teks yang akan disertakan dalam perintah.

Metode HTTP dan URL:

POST https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/publishers/google/models/MODEL_ID:countTokens

Isi JSON permintaan:

{
  "contents": [{
    "role": "ROLE",
    "parts": [{
      "text": "TEXT"
    }]
  }]
}

Untuk mengirim permintaan Anda, pilih salah satu opsi berikut:

curl

Simpan isi permintaan dalam file bernama request.json, dan jalankan perintah berikut:

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/publishers/google/models/MODEL_ID:countTokens"

PowerShell

Simpan isi permintaan dalam file bernama request.json, dan jalankan perintah berikut:

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/publishers/google/models/MODEL_ID:countTokens" | Select-Object -Expand Content

Anda akan melihat respons JSON yang mirip seperti berikut:

Contoh untuk teks dengan gambar atau video:

Gen AI SDK for Python

Instal

pip install --upgrade google-genai

Untuk mempelajari lebih lanjut, lihat dokumentasi referensi SDK.

Tetapkan variabel lingkungan untuk menggunakan Gen AI SDK dengan Vertex AI:

# Replace the `GOOGLE_CLOUD_PROJECT` and `GOOGLE_CLOUD_LOCATION` values
# with appropriate values for your project.
export GOOGLE_CLOUD_PROJECT=GOOGLE_CLOUD_PROJECT
export GOOGLE_CLOUD_LOCATION=global
export GOOGLE_GENAI_USE_VERTEXAI=True

from google import genai
from google.genai.types import HttpOptions, Part

client = genai.Client(http_options=HttpOptions(api_version="v1"))

contents = [
    Part.from_uri(
        file_uri="gs://cloud-samples-data/generative-ai/video/pixel8.mp4",
        mime_type="video/mp4",
    ),
    "Provide a description of the video.",
]

response = client.models.count_tokens(
    model="gemini-2.5-flash",
    contents=contents,
)
print(response)
# Example output:
# total_tokens=16252 cached_content_token_count=None

Gen AI SDK for Go

Pelajari cara menginstal atau mengupdate Gen AI SDK for Go.

Untuk mempelajari lebih lanjut, lihat dokumentasi referensi SDK.

Tetapkan variabel lingkungan untuk menggunakan Gen AI SDK dengan Vertex AI:

# Replace the `GOOGLE_CLOUD_PROJECT` and `GOOGLE_CLOUD_LOCATION` values
# with appropriate values for your project.
export GOOGLE_CLOUD_PROJECT=GOOGLE_CLOUD_PROJECT
export GOOGLE_CLOUD_LOCATION=global
export GOOGLE_GENAI_USE_VERTEXAI=True

import (
	"context"
	"fmt"
	"io"

	genai "google.golang.org/genai"
)

// countWithTxtAndVid shows how to count tokens with text and video inputs.
func countWithTxtAndVid(w io.Writer) error {
	ctx := context.Background()

	client, err := genai.NewClient(ctx, &genai.ClientConfig{
		HTTPOptions: genai.HTTPOptions{APIVersion: "v1"},
	})
	if err != nil {
		return fmt.Errorf("failed to create genai client: %w", err)
	}

	modelName := "gemini-2.0-flash-001"
	contents := []*genai.Content{
		{Parts: []*genai.Part{
			{Text: "Provide a description of the video."},
			{FileData: &genai.FileData{
				FileURI:  "gs://cloud-samples-data/generative-ai/video/pixel8.mp4",
				MIMEType: "video/mp4",
			}},
		}},
	}

	resp, err := client.Models.CountTokens(ctx, modelName, contents, nil)
	if err != nil {
		return fmt.Errorf("failed to generate content: %w", err)
	}

	fmt.Fprintf(w, "Total: %d\nCached: %d\n", resp.TotalTokens, resp.CachedContentTokenCount)

	// Example response:
	// Total: 16252
	// Cached: 0

	return nil
}

Gen AI SDK for Node.js

Instal

npm install @google/genai

Untuk mempelajari lebih lanjut, lihat dokumentasi referensi SDK.

Tetapkan variabel lingkungan untuk menggunakan Gen AI SDK dengan Vertex AI:

# Replace the `GOOGLE_CLOUD_PROJECT` and `GOOGLE_CLOUD_LOCATION` values
# with appropriate values for your project.
export GOOGLE_CLOUD_PROJECT=GOOGLE_CLOUD_PROJECT
export GOOGLE_CLOUD_LOCATION=global
export GOOGLE_GENAI_USE_VERTEXAI=True

const {GoogleGenAI} = require('@google/genai');

const GOOGLE_CLOUD_PROJECT = process.env.GOOGLE_CLOUD_PROJECT;
const GOOGLE_CLOUD_LOCATION = process.env.GOOGLE_CLOUD_LOCATION || 'global';

async function countTokens(
  projectId = GOOGLE_CLOUD_PROJECT,
  location = GOOGLE_CLOUD_LOCATION
) {
  const ai = new GoogleGenAI({
    vertexai: true,
    project: projectId,
    location: location,
  });

  const video = {
    fileData: {
      fileUri: 'gs://cloud-samples-data/generative-ai/video/pixel8.mp4',
      mimeType: 'video/mp4',
    },
  };

  const response = await ai.models.countTokens({
    model: 'gemini-2.0-flash',
    contents: [video, 'Provide a description of the video.'],
  });

  console.log(response);

  return response.totalTokens;
}

Gen AI SDK for Java

Pelajari cara menginstal atau mengupdate Gen AI SDK for Java.

Untuk mempelajari lebih lanjut, lihat dokumentasi referensi SDK.

Tetapkan variabel lingkungan untuk menggunakan Gen AI SDK dengan Vertex AI:

# Replace the `GOOGLE_CLOUD_PROJECT` and `GOOGLE_CLOUD_LOCATION` values
# with appropriate values for your project.
export GOOGLE_CLOUD_PROJECT=GOOGLE_CLOUD_PROJECT
export GOOGLE_CLOUD_LOCATION=global
export GOOGLE_GENAI_USE_VERTEXAI=True


import com.google.genai.Client;
import com.google.genai.types.Content;
import com.google.genai.types.CountTokensResponse;
import com.google.genai.types.HttpOptions;
import com.google.genai.types.Part;
import java.util.List;
import java.util.Optional;

public class CountTokensWithTextAndVideo {

  public static void main(String[] args) {
    // TODO(developer): Replace these variables before running the sample.
    String modelId = "gemini-2.0-flash";
    countTokens(modelId);
  }

  public static Optional<Integer> countTokens(String modelId) {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests.
    try (Client client = Client.builder()
        .httpOptions(HttpOptions.builder().apiVersion("v1").build())
        .build()) {

      Content content = Content.builder()
          .parts(List.of(
              Part.fromText("Provide a description of this video"),
              Part.fromUri("gs://cloud-samples-data/generative-ai/video/pixel8.mp4", "video/mp4")))
          .build();

      CountTokensResponse response =
          client.models.countTokens(modelId, List.of(content),
              null);

      System.out.print(response);
      // Example response:
      // CountTokensResponse{totalTokens=Optional[16251], cachedContentTokenCount=Optional.empty}
      return response.totalTokens();
    }
  }
}

REST

Guna mendapatkan jumlah token dan jumlah karakter yang dapat ditagih untuk permintaan dengan menggunakan Vertex AI API, kirim permintaan POST ke endpoint model penayang.

MODEL_ID="gemini-2.0-flash-001"
PROJECT_ID="my-project"
TEXT="Provide a summary with about two sentences for the following article."
REGION="us-central1"

curl \
-X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json" \
https://${REGION}-aiplatform.googleapis.com/v1/projects/${PROJECT_ID}/locations/${REGION}/publishers/google/models/${MODEL_ID}:countTokens -d \
$'{
    "contents": [{
      "role": "user",
      "parts": [
        {
          "file_data": {
            "file_uri": "gs://cloud-samples-data/generative-ai/video/pixel8.mp4",
            "mime_type": "video/mp4"
          }
        },
        {
          "text": "'"$TEXT"'"
        }]
    }]
 }'

Harga dan kuota

Penggunaan CountTokens API tidak dikenai biaya atau batasan kuota. Kuota maksimum untuk CountTokens API adalah 3.000 permintaan per menit.

Langkah berikutnya