Vertex AI in express mode lets you quickly try out core generative AI features that are available on Vertex AI. This tutorial shows you how to perform the following tasks by using the Vertex AI API in express mode:
- Install and initialize the Vertex AI SDK for Python for express mode.
- Send a request to the Gemini for Google Cloud API, including the
following:
- Non-streaming request
- Streaming request
- Function calling request
Install and initialize the Vertex AI SDK for Python for express mode
The Vertex AI SDK for Python lets you use Google generative AI models and
features to build AI-powered applications. When using Vertex AI in
express mode, install and initialize the google-cloud-aiplatform
package to
authenticate using your generated API key.
Install
To install the Vertex AI SDK for Python for express mode, run the following commands:
# Developer TODO: If you're using Colab, uncomment the following lines:
# from google.colab import auth
# auth.authenticate_user()
!pip install google-cloud-aiplatform
!pip install --force-reinstall -qq "numpy<2.0"
If you're using Colab, ignore any dependency conflicts and restart the runtime after installation.
Initialize
Configure the API key for express mode and environment variables. For details on getting an API key, see Vertex AI in express mode overview.
import base64
import vertexai
from vertexai.preview.generative_models import GenerationConfig, GenerativeModel, Part, SafetySetting, FinishReason, FunctionDeclaration, Tool
# Developer TODO: Replace API_KEY with your API key.
API_KEY = "API_KEY"
vertexai.init(api_key=API_KEY)
Send a request to the Gemini for Google Cloud API
You can send either streaming or non-streaming requests to the Gemini for Google Cloud API. Streaming requests return the response in chunks as the request is being processed. To a human user, streamed responses reduce the perception of latency. Non-streaming requests return the response in one chunk after the request is processed.
Streaming request
To send a streaming request, set stream=True
and print the response in chunks.
def generate():
model = GenerativeModel("gemini-1.5-flash-001")
responses = model.generate_content(
"""Explain bubble sort to me""",
generation_config=generation_config,
safety_settings=safety_settings,
stream=True,
)
for chunk in responses:
print(chunk)
generation_config = GenerationConfig(
max_output_tokens=8192,
temperature=1,
top_p=0.95,
)
safety_settings = [
SafetySetting(
category=SafetySetting.HarmCategory.HARM_CATEGORY_HATE_SPEECH,
threshold=SafetySetting.HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE
),
SafetySetting(
category=SafetySetting.HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT,
threshold=SafetySetting.HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE
),
SafetySetting(
category=SafetySetting.HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT,
threshold=SafetySetting.HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE
),
SafetySetting(
category=SafetySetting.HarmCategory.HARM_CATEGORY_HARASSMENT,
threshold=SafetySetting.HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE
),
]
generate()
Non-streaming request
The following code sample defines a function that sends a non-streaming request
to the gemini-1.5-flash-001
. It shows you how to configure basic request
parameters and safety settings.
def generate():
model = GenerativeModel(
"gemini-1.5-flash-001",
)
response = model.generate_content(
["""Explain bubble sort to me"""],
generation_config=generation_config,
safety_settings=safety_settings
)
print(response.text)
generation_config = GenerationConfig(
max_output_tokens=8192,
temperature=1,
top_p=0.95,
)
safety_settings = [
SafetySetting(
category=SafetySetting.HarmCategory.HARM_CATEGORY_HATE_SPEECH,
threshold=SafetySetting.HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE
),
SafetySetting(
category=SafetySetting.HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT,
threshold=SafetySetting.HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE
),
SafetySetting(
category=SafetySetting.HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT,
threshold=SafetySetting.HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE
),
SafetySetting(
category=SafetySetting.HarmCategory.HARM_CATEGORY_HARASSMENT,
threshold=SafetySetting.HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE
),
]
generate()
Function calling request
The following code sample outputs the JSON that's required to make a function call.
# Specify a function declaration and parameters for an API request.
get_current_weather_func = FunctionDeclaration(
name="get_current_weather",
description="Get the current weather in a given location",
# Function parameters are specified in OpenAPI JSON schema format.
parameters={
"type": "object",
"properties": {"location": {"type": "string", "description": "Location"}},
},
)
# Define a tool that includes the above get_current_weather_func.
weather_tool = Tool(
function_declarations=[get_current_weather_func],
)
gemini_model = GenerativeModel("gemini-1.5-flash-001", tools=[weather_tool])
model_response = gemini_model.generate_content("What is the weather in Boston?")
print("model_response\n",model_response)
Clean up
This tutorial does not create any Google Cloud resources, so no clean up is needed to avoid charges.
What's next
- Try the Vertex AI Studio tutorial for Vertex AI in express mode.
- See the complete API reference for Vertex AI in express mode.