Built-in tools for the Live API

Live API-supported models come with the built-in ability to use the following tools:

To enable a particular tool for usage in returned responses, include the name of the tool in the tools list when you initialize the model. The following sections provide examples of how to use each of the built-in tools in your code.

Supported models

You can use the Live API with the following models:

Model version Availability level
gemini-live-2.5-flash Private GA*
gemini-live-2.5-flash-preview-native-audio Public preview

* Reach out to your Google account team representative to request access.

Function calling

Use function calling to create a description of a function, then pass that description to the model in a request. The response from the model includes the name of a function that matches the description and the arguments to call it with.

All functions must be declared at the start of the session by sending tool definitions as part of the LiveConnectConfig message.

To enable function calling, include function_declarations in the tools list:

Gen AI SDK for Python

import asyncio
from google import genai
from google.genai import types

client = genai.Client(
    vertexai=True,
    project=GOOGLE_CLOUD_PROJECT,
    location=GOOGLE_CLOUD_LOCATION,
)
model = "gemini-live-2.5-flash"

# Simple function definitions
turn_on_the_lights = {"name": "turn_on_the_lights"}
turn_off_the_lights = {"name": "turn_off_the_lights"}

tools = [{"function_declarations": [turn_on_the_lights, turn_off_the_lights]}]
config = {"response_modalities": ["TEXT"], "tools": tools}

async def main():
    async with client.aio.live.connect(model=model, config=config) as session:
        prompt = "Turn on the lights please"
        await session.send_client_content(turns={"parts": [{"text": prompt}]})

        async for chunk in session.receive():
            if chunk.server_content:
                if chunk.text is not None:
                    print(chunk.text)
            elif chunk.tool_call:
                function_responses = []
                for fc in tool_call.function_calls:
                    function_response = types.FunctionResponse(
                        name=fc.name,
                        response={ "result": "ok" } # simple, hard-coded function response
                    )
                    function_responses.append(function_response)

                await session.send_tool_response(function_responses=function_responses)


if __name__ == "__main__":
    asyncio.run(main())
  

WebSockets

Code execution

You can use code execution with the Live API to generate and execute Python code directly. To enable code execution for your responses, include code_execution in the tools list:

Gen AI SDK for Python

import asyncio
from google import genai
from google.genai import types


client = genai.Client(
    vertexai=True,
    project=GOOGLE_CLOUD_PROJECT,
    location=GOOGLE_CLOUD_LOCATION,
)
model = "gemini-live-2.5-flash"

tools = [{'code_execution': {}}]
config = {"response_modalities": ["TEXT"], "tools": tools}

async def main():
    async with client.aio.live.connect(model=model, config=config) as session:
        prompt = "Compute the largest prime palindrome under 100000."
        await session.send_client_content(turns={"parts": [{"text": prompt}]})

        async for chunk in session.receive():
            if chunk.server_content:
                if chunk.text is not None:
                    print(chunk.text)
            
                model_turn = chunk.server_content.model_turn
                if model_turn:
                    for part in model_turn.parts:
                      if part.executable_code is not None:
                        print(part.executable_code.code)

                      if part.code_execution_result is not None:
                        print(part.code_execution_result.output)

if __name__ == "__main__":
    asyncio.run(main())
  

You can use Grounding with Google Search with the Live API by including google_search in the tools list:

Gen AI SDK for Python

import asyncio
from google import genai
from google.genai import types

client = genai.Client(
    vertexai=True,
    project=GOOGLE_CLOUD_PROJECT,
    location=GOOGLE_CLOUD_LOCATION,
)
model = "gemini-live-2.5-flash"


tools = [{'google_search': {}}]
config = {"response_modalities": ["TEXT"], "tools": tools}

async def main():
    async with client.aio.live.connect(model=model, config=config) as session:
        prompt = "When did the last Brazil vs. Argentina soccer match happen?"
        await session.send_client_content(turns={"parts": [{"text": prompt}]})

        async for chunk in session.receive():
            if chunk.server_content:
                if chunk.text is not None:
                    print(chunk.text)

                # The model might generate and execute Python code to use Search
                model_turn = chunk.server_content.model_turn
                if model_turn:
                    for part in model_turn.parts:
                        if part.executable_code is not None:
                        print(part.executable_code.code)

                        if part.code_execution_result is not None:
                        print(part.code_execution_result.output)

if __name__ == "__main__":
    asyncio.run(main())
  

Vertex AI RAG Engine

You can use Vertex AI RAG Engine with the Live API for grounding, storing, and retrieving contexts:

from google import genai
from google.genai import types
from google.genai.types import (Content, LiveConnectConfig, HttpOptions, Modality, Part)
from IPython import display

PROJECT_ID=YOUR_PROJECT_ID
LOCATION=YOUR_LOCATION
TEXT_INPUT=YOUR_TEXT_INPUT
MODEL_NAME="gemini-live-2.5-flash"

client = genai.Client(
   vertexai=True,
   project=PROJECT_ID,
   location=LOCATION,
)

rag_store=types.VertexRagStore(
   rag_resources=[
       types.VertexRagStoreRagResource(
           rag_corpus=<Your corpus resource name>
       )
   ],
   # Set `store_context` to true to allow Live API sink context into your memory corpus.
   store_context=True
)

async with client.aio.live.connect(
   model=MODEL_NAME,
   config=LiveConnectConfig(response_modalities=[Modality.TEXT],
                            tools=[types.Tool(
                                retrieval=types.Retrieval(
                                    vertex_rag_store=rag_store))]),
) as session:
   text_input=TEXT_INPUT
   print("> ", text_input, "\n")
   await session.send_client_content(
       turns=Content(role="user", parts=[Part(text=text_input)])
   )

   async for message in session.receive():
       if message.text:
           display.display(display.Markdown(message.text))
           continue

For more information, see Use Vertex AI RAG Engine in Gemini Live API.

(Public preview) Native audio

Gemini 2.5 Flash with Live API introduces native audio capabilities, enhancing the standard Live API features. Native audio provides richer and more natural voice interactions through 30 HD voices in 24 languages. It also includes two new features exclusive to native audio: Proactive Audio and Affective Dialog.

Use Proactive Audio

Proactive Audio allows the model to respond only when relevant. When enabled, the model generates text transcripts and audio responses proactively, but only for queries directed to the device. Non-device-directed queries are ignored.

To use Proactive Audio, configure the proactivity field in the setup message and set proactive_audio to true:

Gen AI SDK for Python

config = LiveConnectConfig(
    response_modalities=["AUDIO"],
    proactivity=ProactivityConfig(proactive_audio=True),
)
  

Use Affective Dialog

Affective Dialog allows models using Live API native audio to better understand and respond appropriately to users' emotional expressions, leading to more nuanced conversations.

To enable Affective Dialog, set enable_affective_dialog to true in the setup message:

Gen AI SDK for Python

config = LiveConnectConfig(
    response_modalities=["AUDIO"],
    enable_affective_dialog=True,
)
  

More information

For more information on using the Live API, see: