Per le metriche basate su modelli, il servizio di valutazione dell'AI generativa valuta i tuoi modelli con un modello di base come Gemini, configurato come modello giudice. Questa pagina descrive come migliorare la qualità del modello di valutazione e personalizzarlo in base alle tue esigenze utilizzando tecniche di ingegneria dei prompt.
Per il flusso di lavoro di valutazione di base, consulta la guida rapida di Gen AI evaluation service. La serie di personalizzazione avanzata del modello di valutazione include le seguenti pagine:
- Valutare un modello giudice
- Richiesta di personalizzazione del modello di giudice (pagina corrente)
- Configurare un modello di giudice
Panoramica
L'utilizzo di valutatori umani per valutare i modelli linguistici di grandi dimensioni (LLM) può essere costoso e richiedere molto tempo. L'utilizzo di un modello di valutazione è un modo più scalabile per valutare gli LLM.
Il servizio di valutazione dell'AI generativa utilizza Gemini 2.0 Flash per impostazione predefinita come modello di valutazione, con prompt personalizzabili per valutare il modello per vari casi d'uso. Molti casi d'uso di base sono trattati nei modelli di metriche basati su modelli, ma puoi utilizzare la seguente procedura per personalizzare ulteriormente il modello di valutazione oltre i casi d'uso di base:
Crea un set di dati con prompt rappresentativi del tuo caso d'uso. La dimensione consigliata del set di dati è compresa tra 100 e 1000 prompt.
Utilizza i prompt per modificare il modello di giudice con tecniche di prompt engineering.
Esegui una valutazione con il modello giudice.
Tecniche di prompt engineering
Questa sezione elenca le tecniche di ingegneria dei prompt che puoi utilizzare per modificare il modello di giudice. Gli esempi utilizzano il prompt zero-shot, ma puoi anche utilizzare esempi few-shot nel prompt per migliorare la qualità del modello.
Inizia con i prompt che si applicano all'intero set di dati di valutazione. I prompt devono includere criteri di valutazione e rubriche di alto livello per le valutazioni e richiedere un verdetto finale al modello di giudice. Per esempi di criteri di valutazione e rubriche in vari casi d'uso, consulta Modelli di prompt per le metriche.
Utilizzare il Chain-of-Thought Prompting
Chiedi al modello giudice di valutare un modello candidato con una sequenza di azioni o passaggi logicamente coerenti.
Ad esempio, puoi utilizzare le seguenti istruzioni passo passo:
"Please first list down the instructions in the user query."
"Please highlight such specific keywords."
"After listing down instructions, you should rank the instructions in the order of importance."
"After that, INDEPENDENTLY check if response A and response B for meeting each of the instructions."
"Writing quality/style should NOT be used to judge the response quality unless it was requested by the user."
"When evaluating the final response quality, please value Instruction Following a more important rubrics than Truthfulness."
Il seguente esempio di prompt chiede al modello giudice di valutare le attività di testo utilizzando il prompt Chain-of-Thought:
# Rubrics
Your mission is to judge responses from two AI models, Model A and Model B, and decide which is better. You will be given the previous conversations between the user and the model, a prompt, and responses from both models.
Please use the following rubric criteria to judge the responses:
<START OF RUBRICS>
Your task is to first analyze each response based on the two rubric criteria: instruction_following, and truthfulness (factual correctness). Start your analysis with "Analysis".
(1) Instruction Listing
Please first list down the instructions in the user query. In general, an instruction is VERY important if it is specific asked in the prompt and deviate from the norm. Please highlight such specific keywords.
You should also derive the task type from the prompt and include the task specific implied instructions.
Sometimes, no instruction is available in the prompt. It is your job to infer if the instruction is to auto-complete the prompt or asking LLM for followups.
After listing down instructions, you should rank the instructions in the order of importance.
After that, INDEPENDENTLY check if response A and response B for meeting each of the instructions. You should itemize for each instruction, if response meet, partially meet or does not meet the requirement using reasoning. You should start reasoning first before reaching a conclusion whether response satisfies the requirement. Citing examples while making reasoning is preferred.
(2) Truthfulness
Compare response A and response B for factual correctness. The one with less hallucinated issues is better.
If response is in sentences and not too long, you should check every sentence separately.
For longer responses, to check factual correctness, focus specifically on places where response A and B differ. Find the correct information in the text to decide if one is more truthful to the other or they are about the same.
If you cannot determine validity of claims made in the response, or response is a punt ("I am not able to answer that type of question"), the response has no truthful issues.
Truthfulness check is not applicable in the majority of creative writing cases ("write me a story about a unicorn on a parade")
Writing quality/style should NOT be used to judge the response quality unless it was requested by the user.
In the end, express your final verdict in one of the following choices:
1. Response A is better: [[A>B]]
2. Tie, relatively the same: [[A=B]]
3. Response B is better: [[B>A]]
Example of final verdict: "My final verdict is tie, relatively the same: [[A=B]]".
When evaluating the final response quality, please value Instruction Following a more important rubrics than Truthfulness.
When for both response, instruction and truthfulness are fully meet, it is a tie.
<END OF RUBRICS>
Guidare il ragionamento del modello con le linee guida per la valutazione
Utilizza le linee guida per la valutazione per aiutare il modello giudice a valutare il ragionamento del modello. Le linee guida per la valutazione sono diverse dai criteri di valutazione.
Ad esempio, il seguente prompt utilizza i criteri di valutazione, che indicano a un modello di giudice di valutare l'attività "Segui le istruzioni" con le rubriche di valutazione "Problemi gravi", "Problemi minori" e "Nessun problema":
Your task is to first analyze each response based on the three rubric criteria: verbosity, instruction_following, truthfulness (code correctness) and (coding) executability. Please note that the model responses should follow "response system instruction" (if provided). Format your judgment in the following way:
Response A - verbosity:too short|too verbose|just right
Response A - instruction_following:major issues|minor issues|no issues
Response A - truthfulness:major issues|minor issues|no issues
Response A - executability:no|no code present|yes-fully|yes-partially
Then do the same for response B.
After the rubric judgements, you should also give a brief rationale to summarize your evaluation considering each individual criteria as well as the overall quality in a new paragraph starting with "Reason: ".
In the last line, express your final judgment in the format of: "Which response is better: [[verdict]]" where "verdict" is one of {Response A is much better, Response A is better, Response A is slightly better, About the same, Response B is slightly better, Response B is better, Response B is much better}. Do not use markdown format or output anything else.
Il seguente prompt utilizza le linee guida per la valutazione per aiutare il modello di valutazione a valutare l'attività "Segui le istruzioni":
You are a judge for coding related tasks for LLMs. You will be provided with a coding prompt, and two responses (Response A and Response B) attempting to answer the prompt. Your task is to evaluate each response based on the following criteria:
Correctness: Does the code produce the correct output and solve the problem as stated?
Executability: Does the code run without errors?
Instruction Following: Does the code adhere to the given instructions and constraints?
Please think about the three criteria, and provide a side-by-side comparison rating to to indicate which one is better.
Calibrare il modello di valutazione con le risposte di riferimento
Puoi calibrare il modello di valutazione con risposte di riferimento per alcuni o tutti i prompt.
Il seguente prompt guida il modello di valutazione su come utilizzare le risposte di riferimento:
"Note that you can compare the responses with the reference answer to make your judgment, but the reference answer may not be the only correct answer to the query."
L'esempio seguente utilizza anche il ragionamento, il prompt Chain-of-Thought e le linee guida per la valutazione per guidare la procedura di valutazione dell'attività "Segui le istruzioni":
# Rubrics
Your mission is to judge responses from two AI models, Model A and Model B, and decide which is better. You will be given a user query, source summaries, and responses from both models. A reference answer
may also be provided - note that you can compare the responses with the reference answer to make your judgment, but the reference answer may not be the only correct answer to the query.
Please use the following rubric criteria to judge the responses:
<START OF RUBRICS>
Your task is to first analyze each response based on the three rubric criteria: grounding, completeness, and instruction_following. Start your analysis with "Analysis".
(1) Grounding
Please first read through all the given sources in the source summaries carefully and make sure you understand the key points in each one.
After that, INDEPENDENTLY check if response A and response B use ONLY the given sources in the source summaries to answer the user query. It is VERY important to check that all
statements in the response MUST be traceable back to the source summaries and ACCURATELY cited.
(2) Completeness
Please first list down the aspects in the user query. After that, INDEPENDENTLY check if response A and response B for covering each of the aspects by using ALL RELEVANT information from the sources.
(3) Instruction Following
Please read through the following instruction following rubrics carefully. After that, INDEPENDENTLY check if response A and response B for following each of the instruction following rubrics successfully.
* Does the response provide a final answer based on summaries of 3 potential answers to a user query?
* Does the response only use the technical sources provided that are relevant to the query?
* Does the response use only information from sources provided?
* Does the response select all the sources that provide helpful details to answer the question in the Technical Document?
* If the sources have significant overlapping or duplicate details, does the response select sources which are most detailed and comprehensive?
* For each selected source, does the response prepend source citations?
* Does the response use the format: "Source X" where x represents the order in which the technical source appeared in the input?
* Does the response use original source(s) directly in its response, presenting each source in its entirety, word-for-word, without omitting and altering any details?
* Does the response create a coherent technical final answer from selected Sources without inter-mixing text from any of the Sources?
Writing quality/style can be considered, but should NOT be used as critical rubric criteria to judge the response quality.
In the end, express your final verdict in one of the following choices:
1. Response A is better: [[A>B]]
2. Tie, relatively the same: [[A=B]]
3. Response B is better: [[B>A]]
Example of final verdict: "My final verdict is tie, relatively the same: [[A=B]]".
When for both response, grounding, completeness, and instruction following are fully meet, it is a tie.
<END OF RUBRICS>
Passaggi successivi
- Esegui la valutazione con il modello di giudice modificato.
- Configura il modello di giudice