Pemahaman audio (hanya ucapan)

Anda dapat menambahkan audio ke permintaan Gemini untuk melakukan tugas yang melibatkan memahami konten audio yang disertakan. Halaman ini menunjukkan cara menambahkan audio ke permintaan Anda ke Gemini di Vertex AI dengan menggunakan Konsol Google Cloud dan Vertex AI API.

Model yang didukung

Tabel berikut mencantumkan model yang mendukung pemahaman audio:

Model Detail modalitas audio

Flash Gemini 1.5

Buka kartu model Flash Gemini 1.5

Durasi audio maksimum per perintah: ~8,4 jam atau hingga 1 juta token.

Ucapan dapat dipahami untuk fitur ringkasan audio, transkripsi, dan terjemahan.

Gemini 1.5 Pro

Buka kartu model Gemini 1.5 Pro

Durasi audio maksimum per perintah: ~8,4 jam atau hingga 1 juta token.

Ucapan dapat dipahami untuk fitur ringkasan audio, transkripsi, dan terjemahan.

Untuk daftar bahasa yang didukung oleh model Gemini, lihat informasi model Model Google. Untuk mempelajari selengkapnya tentang cara mendesain prompt multimodal. Mendesain prompt multimodal. Jika Anda mencari cara untuk menggunakan Gemini langsung dari perangkat seluler Anda dan aplikasi web, lihat Vertex AI di Firebase SDK untuk Aplikasi Android, Swift, web, dan Flutter.

Menambahkan audio ke permintaan

Anda dapat menambahkan file audio dalam permintaan Anda ke Gemini.

Audio tunggal

Berikut cara menggunakan file audio untuk meringkas podcast.

Python

Untuk mempelajari cara menginstal atau mengupdate Vertex AI SDK untuk Python, lihat Menginstal Vertex AI SDK untuk Python. Untuk informasi selengkapnya, lihat Vertex AI SDK untuk Python dokumentasi referensi API.

Respons streaming dan non-streaming

Anda dapat memilih apakah model akan menghasilkan respons streaming atau non-streaming. Untuk respons bertahap, Anda menerima setiap respons segera setelah token output-nya dibuat. Untuk respons non-streaming, Anda menerima semua respons setelah semua token output dibuat.

Untuk respons streaming, gunakan parameter stream di generate_content.

  response = model.generate_content(contents=[...], stream = True)
  

Untuk respons non-streaming, hapus parameter, atau setel parameter ke False.

Kode contoh


  import vertexai
  from vertexai.generative_models import GenerativeModel, Part

  # TODO (developer): update project_id
  vertexai.init(project=PROJECT_ID, location="us-central1")

  model = GenerativeModel("gemini-1.5-flash-001")

  prompt = """
  Please provide a summary for the audio.
  Provide chapter titles, be concise and short, no need to provide chapter summaries.
  Do not make up any information that is not part of the audio and do not be verbose.
"""

  audio_file_uri = "gs://cloud-samples-data/generative-ai/audio/pixel.mp3"
  audio_file = Part.from_uri(audio_file_uri, mime_type="audio/mpeg")

  contents = [audio_file, prompt]

  response = model.generate_content(contents)
  print(response.text)

Java

Sebelum mencoba contoh ini, ikuti petunjuk penyiapan Java di Vertex AI panduan memulai. Untuk informasi lebih lanjut, lihat Vertex AI Dokumentasi referensi Java SDK untuk Gemini.

Untuk mengautentikasi ke Vertex AI, siapkan Application Default Kredensial. Untuk informasi selengkapnya, lihat Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

Respons streaming dan non-streaming

Anda dapat memilih apakah model akan menghasilkan respons streaming atau non-streaming. Untuk respons bertahap, Anda menerima setiap respons segera setelah token output-nya dibuat. Untuk respons non-streaming, Anda menerima semua respons setelah semua token output dibuat.

Untuk respons streaming, gunakan metode generateContentStream.

  public ResponseStream<GenerateContentResponse> generateContentStream(Content content)
  

Untuk respons non-streaming, gunakan metode generateContent.

  public GenerateContentResponse generateContent(Content content)
  

Kode contoh

import com.google.cloud.vertexai.VertexAI;
import com.google.cloud.vertexai.api.GenerateContentResponse;
import com.google.cloud.vertexai.generativeai.ContentMaker;
import com.google.cloud.vertexai.generativeai.GenerativeModel;
import com.google.cloud.vertexai.generativeai.PartMaker;
import com.google.cloud.vertexai.generativeai.ResponseHandler;
import java.io.IOException;

public class AudioInputSummarization {

  public static void main(String[] args) throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "your-google-cloud-project-id";
    String location = "us-central1";
    String modelName = "gemini-1.5-flash-001";

    summarizeAudio(projectId, location, modelName);
  }

  // Analyzes the given audio input.
  public static String summarizeAudio(String projectId, String location, String modelName)
      throws IOException {
    // Initialize client that will be used to send requests. This client only needs
    // to be created once, and can be reused for multiple requests.
    try (VertexAI vertexAI = new VertexAI(projectId, location)) {
      String audioUri = "gs://cloud-samples-data/generative-ai/audio/pixel.mp3";

      GenerativeModel model = new GenerativeModel(modelName, vertexAI);
      GenerateContentResponse response = model.generateContent(
          ContentMaker.fromMultiModalData(
              "Please provide a summary for the audio.\n"
                  + "Provide chapter titles with timestamps, be concise and short, "
                  + "no need to provide chapter summaries.\n"
                  + "Do not make up any information that is not part of the audio "
                  + "and do not be verbose.",
              PartMaker.fromMimeTypeAndData("audio/mp3", audioUri)
          ));

      String output = ResponseHandler.getText(response);
      System.out.println(output);

      return output;
    }
  }
}

Node.js

Sebelum mencoba contoh ini, ikuti petunjuk penyiapan Node.js di halaman AI Generatif panduan memulai menggunakan Node.js SDK. Untuk informasi selengkapnya, lihat referensi Node.js SDK untuk Gemini dokumentasi tambahan.

Untuk mengautentikasi ke Vertex AI, siapkan Application Default Kredensial. Untuk informasi selengkapnya, lihat Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

Respons streaming dan non-streaming

Anda dapat memilih apakah model akan menghasilkan respons streaming atau non-streaming. Untuk respons bertahap, Anda menerima setiap respons segera setelah token output-nya dibuat. Untuk respons non-streaming, Anda menerima semua respons setelah semua token output dibuat.

Untuk respons streaming, gunakan generateContentStream.

  const streamingResp = await generativeModel.generateContentStream(request);
  

Untuk respons non-streaming, gunakan metode generateContent.

  const streamingResp = await generativeModel.generateContent(request);
  

Kode contoh

const {VertexAI} = require('@google-cloud/vertexai');

/**
 * TODO(developer): Update these variables before running the sample.
 */
async function summarize_audio(projectId = 'PROJECT_ID') {
  const vertexAI = new VertexAI({project: projectId, location: 'us-central1'});

  const generativeModel = vertexAI.getGenerativeModel({
    model: 'gemini-1.5-flash-001',
  });

  const filePart = {
    file_data: {
      file_uri: 'gs://cloud-samples-data/generative-ai/audio/pixel.mp3',
      mime_type: 'audio/mpeg',
    },
  };
  const textPart = {
    text: `
    Please provide a summary for the audio.
    Provide chapter titles with timestamps, be concise and short, no need to provide chapter summaries.
    Do not make up any information that is not part of the audio and do not be verbose.`,
  };

  const request = {
    contents: [{role: 'user', parts: [filePart, textPart]}],
  };

  const resp = await generativeModel.generateContent(request);
  const contentResponse = await resp.response;
  console.log(JSON.stringify(contentResponse));
}

Go

Sebelum mencoba contoh ini, ikuti petunjuk penyiapan Go di Vertex AI panduan memulai. Untuk informasi lebih lanjut, lihat Vertex AI Go SDK untuk dokumentasi referensi Gemini.

Untuk melakukan autentikasi ke Vertex AI, siapkan Kredensial Default Aplikasi. Untuk informasi selengkapnya, lihat Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

Respons streaming dan non-streaming

Anda dapat memilih apakah model akan menghasilkan respons streaming atau non-streaming. Untuk respons bertahap, Anda menerima setiap respons segera setelah token output-nya dibuat. Untuk respons non-streaming, Anda menerima semua respons setelah semua token output dibuat.

Untuk respons streaming, gunakan GenerateContentStream.

  iter := model.GenerateContentStream(ctx, genai.Text("Tell me a story about a lumberjack and his giant ox. Keep it very short."))
  

Untuk respons non-streaming, gunakan metode GenerateContent.

  resp, err := model.GenerateContent(ctx, genai.Text("What is the average size of a swallow?"))
  

Kode contoh

import (
	"context"
	"errors"
	"fmt"
	"io"
	"mime"
	"path/filepath"

	"cloud.google.com/go/vertexai/genai"
)

// summarizeAudio shows how to send an audio asset and a text question to a model, writing the response to the
// provided io.Writer.
func summarizeAudio(w io.Writer, projectID, location, modelName string) error {
	// location := "us-central1"
	// modelName := "gemini-1.5-flash-001"
	ctx := context.Background()

	client, err := genai.NewClient(ctx, projectID, location)
	if err != nil {
		return fmt.Errorf("unable to create client: %w", err)
	}
	defer client.Close()

	model := client.GenerativeModel(modelName)
	model.SetTemperature(0.4)

	// Given an audio file URL, prepare audio file as genai.Part
	part := genai.FileData{
		MIMEType: mime.TypeByExtension(filepath.Ext("pixel.mp3")),
		FileURI:  "gs://cloud-samples-data/generative-ai/audio/pixel.mp3",
	}

	res, err := model.GenerateContent(ctx, part, genai.Text(`
		Please provide a summary for the audio.
		Provide chapter titles with timestamps, be concise and short, no need to provide chapter summaries.
		Do not make up any information that is not part of the audio and do not be verbose.
	`,
	))
	if err != nil {
		return fmt.Errorf("unable to generate contents: %w", err)
	}

	if len(res.Candidates) == 0 ||
		len(res.Candidates[0].Content.Parts) == 0 {
		return errors.New("empty response from model")
	}

	fmt.Fprintf(w, "generated summary:\n%s\n", res.Candidates[0].Content.Parts[0])
	return nil
}

C#

Sebelum mencoba contoh ini, ikuti petunjuk penyiapan C# di Vertex AI panduan memulai. Untuk informasi lebih lanjut, lihat Vertex AI Dokumentasi referensi C#.

Untuk mengautentikasi ke Vertex AI, siapkan Application Default Kredensial. Untuk informasi selengkapnya, lihat Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

Respons streaming dan non-streaming

Anda dapat memilih apakah model akan menghasilkan respons streaming atau non-streaming. Untuk respons bertahap, Anda menerima setiap respons segera setelah token output-nya dibuat. Untuk respons non-streaming, Anda menerima semua respons setelah semua token output dibuat.

Untuk respons streaming, gunakan metode StreamGenerateContent.

  public virtual PredictionServiceClient.StreamGenerateContentStream StreamGenerateContent(GenerateContentRequest request)
  

Untuk respons non-streaming, gunakan metode GenerateContentAsync.

  public virtual Task<GenerateContentResponse> GenerateContentAsync(GenerateContentRequest request)
  

Untuk informasi selengkapnya tentang cara server dapat menstreaming respons, lihat RPC Streaming.

Kode contoh


using Google.Cloud.AIPlatform.V1;
using System;
using System.Threading.Tasks;

public class AudioInputSummarization
{
    public async Task<string> SummarizeAudio(
        string projectId = "your-project-id",
        string location = "us-central1",
        string publisher = "google",
        string model = "gemini-1.5-flash-001")
    {
        var predictionServiceClient = new PredictionServiceClientBuilder
        {
            Endpoint = $"{location}-aiplatform.googleapis.com"
        }.Build();

        string prompt = @"Please provide a summary for the audio.
Provide chapter titles with timestamps, be concise and short, no need to provide chapter summaries.
Do not make up any information that is not part of the audio and do not be verbose.";

        var generateContentRequest = new GenerateContentRequest
        {
            Model = $"projects/{projectId}/locations/{location}/publishers/{publisher}/models/{model}",
            Contents =
            {
                new Content
                {
                    Role = "USER",
                    Parts =
                    {
                        new Part { Text = prompt },
                        new Part { FileData = new() { MimeType = "audio/mp3", FileUri = "gs://cloud-samples-data/generative-ai/audio/pixel.mp3" } }
                    }
                }
            }
        };

        GenerateContentResponse response = await predictionServiceClient.GenerateContentAsync(generateContentRequest);

        string responseText = response.Candidates[0].Content.Parts[0].Text;
        Console.WriteLine(responseText);

        return responseText;
    }
}

REST

Setelah Anda menyiapkan lingkungan Anda, Anda dapat menggunakan REST untuk menguji prompt teks. Contoh berikut mengirim permintaan ke penayang endpoint model Google Cloud.

Sebelum menggunakan salah satu data permintaan, lakukan penggantian berikut:

  • LOCATION: Region untuk memproses permintaan. Masukkan wilayah yang didukung. Untuk mengetahui daftar lengkap wilayah yang didukung, lihat Lokasi yang tersedia.

    Klik untuk meluaskan daftar sebagian wilayah yang tersedia

    • us-central1
    • us-west4
    • northamerica-northeast1
    • us-east4
    • us-west1
    • asia-northeast3
    • asia-southeast1
    • asia-northeast1
  • PROJECT_ID: Project ID Anda.
  • FILE_URI: URI Cloud Storage file yang akan disertakan dalam perintah. Objek bucket harus berupa dapat dibaca secara publik atau berada di project Google Cloud yang sama dengan yang mengirim permintaan. Anda juga harus tentukan jenis media (mimeType) file.

    Jika tidak memiliki file audio di Cloud Storage, Anda dapat menggunakan file yang tersedia untuk publik: gs://cloud-samples-data/generative-ai/audio/pixel.mp3 dengan jenis mime audio/mp3. Untuk mendengarkan audio ini, buka sampel MP3 .

  • MIME_TYPE: Jenis media file yang ditentukan dalam data atau fileUri kolom. Nilai yang dapat diterima mencakup:

    Klik untuk meluaskan jenis MIME

    • application/pdf
    • audio/mpeg
    • audio/mp3
    • audio/wav
    • image/png
    • image/jpeg
    • text/plain
    • video/mov
    • video/mpeg
    • video/mp4
    • video/mpg
    • video/avi
    • video/wmv
    • video/mpegps
    • video/flv
  • TEXT
    Petunjuk teks yang harus disertakan dalam perintah. Misalnya, Please provide a summary for the audio. Provide chapter titles, be concise and short, no need to provide chapter summaries. Do not make up any information that is not part of the audio and do not be verbose.

Untuk mengirim permintaan Anda, pilih salah satu opsi berikut:

curl

Simpan isi permintaan dalam file bernama request.json. Jalankan perintah berikut di terminal untuk membuat atau menimpa file ini di direktori saat ini:

cat > request.json << 'EOF'
{
  "contents": {
    "role": "USER",
    "parts": [
      {
        "fileData": {
          "fileUri": "FILE_URI",
          "mimeType": "MIME_TYPE"
        }
      },
      {
        "text": "TEXT"
      }
    ]
  }
}
EOF

Kemudian, jalankan perintah berikut untuk mengirim permintaan REST Anda:

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/publishers/google/models/gemini-1.5-flash:generateContent"

PowerShell

Simpan isi permintaan dalam file bernama request.json. Jalankan perintah berikut di terminal untuk membuat atau menimpa file ini di direktori saat ini:

@'
{
  "contents": {
    "role": "USER",
    "parts": [
      {
        "fileData": {
          "fileUri": "FILE_URI",
          "mimeType": "MIME_TYPE"
        }
      },
      {
        "text": "TEXT"
      }
    ]
  }
}
'@  | Out-File -FilePath request.json -Encoding utf8

Kemudian, jalankan perintah berikut untuk mengirim permintaan REST Anda:

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/publishers/google/models/gemini-1.5-flash:generateContent" | Select-Object -Expand Content

Anda akan menerima respons JSON yang mirip dengan berikut ini.

Perhatikan hal berikut dalam URL untuk contoh ini:
  • Gunakan generateContent untuk meminta agar respons ditampilkan setelah dibuat sepenuhnya. Untuk mengurangi persepsi latensi kepada audiens manusia, streaming respons secara langsung yang dibuat dengan menggunakan streamGenerateContent .
  • ID model multimodal terletak di akhir URL sebelum metode (misalnya, gemini-1.5-flash atau gemini-1.0-pro-vision). Contoh ini dapat mendukung seperti model AI generatif.

Konsol

Untuk mengirim prompt multimodal menggunakan Konsol Google Cloud, lakukan berikut ini:

  1. Di bagian Vertex AI pada Konsol Google Cloud, buka halaman Vertex AI Studio.

    Buka Vertex AI Studio

  2. Di bagian Prompt design (single turn), klik Open.
  3. Opsional: Konfigurasi model dan parameter:

    • Model: Pilih model.
    • Region: Pilih wilayah yang ingin Anda gunakan.
    • Suhu: Gunakan penggeser atau kotak teks untuk memasukkan nilai suhu.

      Suhu digunakan untuk pengambilan sampel selama pembuatan respons, yang terjadi saat topP dan topK diterapkan. Suhu mengontrol tingkat keacakan dalam pemilihan token. Suhu yang lebih rendah cocok untuk perintah yang memerlukan respons yang kurang terbuka atau kreatif, sedangkan suhu yang lebih tinggi dapat memberikan hasil yang lebih beragam atau kreatif. Suhu 0 berarti token probabilitas tertinggi selalu dipilih. Dalam hal ini, respons untuk permintaan tertentu sebagian besar deterministik, tetapi sedikit variasi masih dapat dilakukan.

      Jika model menampilkan respons yang terlalu umum, terlalu pendek, atau model memberikan fallback respons, coba tingkatkan suhunya.

    • Batas token output: Gunakan penggeser atau kotak teks untuk memasukkan nilai untuk {i>max output limit<i}.

      Jumlah maksimum token yang dapat dibuat dalam respons. Token terdiri dari sekitar empat karakter. 100 token setara dengan sekitar 60-80 kata.

      Tentukan nilai yang lebih rendah untuk respons yang lebih singkat dan nilai yang lebih tinggi untuk respons yang berpotensi lebih lama yang dihasilkan.

    • Tambahkan urutan perhentian: Opsional. Masukkan urutan perhentian, yang merupakan serangkaian karakter yang menyertakan spasi. Jika model menemukan urutan perhentian, pembuatan respons akan berhenti. Urutan perhentian tidak disertakan dalam respons, dan Anda dapat menambahkan hingga lima urutan perhentian.
  4. Opsional: Untuk mengonfigurasi parameter lanjutan, klik Lanjutan dan konfigurasikan sebagai berikut:
  5. Klik untuk meluaskan konfigurasi lanjutan

    • Top-K: Gunakan penggeser atau kotak teks untuk memasukkan nilai untuk top-K (tidak didukung untuk Gemini 1.5).

      Top-K mengubah cara model memilih token untuk output. Top-K 1 berarti token yang dipilih berikutnya adalah yang paling mungkin di antara semua token dalam kosakata model (juga disebut decoding greedy), sedangkan top-K 3 berarti token berikutnya dipilih di antara tiga token yang paling mungkin dengan menggunakan suhu.

      Untuk setiap langkah pemilihan token, token top-K dengan probabilitas tertinggi akan diambil sampelnya. Kemudian token akan difilter lebih lanjut berdasarkan top-P dengan token akhir yang dipilih menggunakan pengambilan sampel suhu.

      Tentukan nilai yang lebih rendah untuk respons acak yang lebih sedikit dan nilai yang lebih tinggi untuk respons acak yang lebih banyak.

    • Top-P: Gunakan penggeser atau kotak teks untuk memasukkan nilai untuk top-P. Token dipilih dari yang paling mungkin hingga yang paling kecil hingga jumlah probabilitasnya sama dengan nilai top-P. Untuk hasil yang paling sedikit variabel, setel top-P ke 0.
    • Aktifkan Grounding: Grounding tidak didukung untuk multimodal prompt.
  6. Untuk mengupload media, seperti file MP3 dan WAV, lakukan berikut ini:
    1. Klik Sisipkan Media, lalu pilih sumber.

      Jika Anda memilih Google Drive sebagai sumber, Anda harus memilih akun dan memberikan izin untuk Vertex AI Studio akan mengakses akun Anda saat pertama kali pilih opsi ini. Anda dapat mengupload beberapa file media yang memiliki berukuran hingga 10 MB. Satu file tidak boleh melebihi 7 MB.

    2. Klik file yang ingin ditambahkan.
    3. Klik Pilih.

      Thumbnail file akan ditampilkan di panel Prompt. Jumlah total token juga akan ditampilkan. Jika data perintah Anda melebihi batas token, token akan dipotong dan tidak disertakan dalam pemrosesan data Anda.

    4. Opsional: Untuk menampilkan jumlah token yang dihitung di file audio Anda dan jumlah semua token, klik View tokens.

      Perlu waktu hingga 15 detik untuk menghitung jumlah token untuk file media. Tampilan ID Token ke teks dan ID Token tidak menampilkan output yang berharga, karena token media tidak didukung.

      Untuk menutup panel alat tokenizer, klik X, atau klik di luar panel.

  7. Masukkan perintah teks Anda di panel Prompt.
  8. Opsional: Untuk menampilkan jumlah token yang dihitung di file audio Anda, jumlah token teks, dan jumlah semua token, klik Lihat token. Anda dapat melihat token atau ID token dari perintah teks Anda.
    • Untuk melihat token dalam perintah teks yang ditandai dengan warna berbeda yang menandai batas setiap ID token, klik Token ID to text. Token media tidak didukung.
    • Untuk melihat ID token, klik ID Token.

      Untuk menutup panel alat tokenizer, klik X, atau klik di luar panel.

  9. Klik Kirim.
  10. Opsional: Untuk menyimpan perintah Anda ke Perintah saya, klik Simpan.
  11. Opsional: Untuk mendapatkan kode Python atau perintah curl untuk perintah Anda, klik Dapatkan kode.

Transkripsi audio

Berikut ini cara menggunakan file audio untuk mentranskripsikan wawancara.

Python

Untuk mempelajari cara menginstal atau mengupdate Vertex AI SDK untuk Python, lihat Menginstal Vertex AI SDK untuk Python. Untuk informasi selengkapnya, lihat Vertex AI SDK untuk Python dokumentasi referensi API.

Respons streaming dan non-streaming

Anda dapat memilih apakah model akan menghasilkan respons streaming atau non-streaming. Untuk respons bertahap, Anda menerima setiap respons segera setelah token output-nya dibuat. Untuk respons non-streaming, Anda menerima semua respons setelah semua token output dibuat.

Untuk respons streaming, gunakan parameter stream di generate_content.

  response = model.generate_content(contents=[...], stream = True)
  

Untuk respons non-streaming, hapus parameter, atau setel parameter ke False.

Kode contoh


  import vertexai
  from vertexai.generative_models import GenerativeModel, Part

  # TODO (developer): update project & location
  vertexai.init(project=PROJECT_ID, location="us-central1")

  model = GenerativeModel("gemini-1.5-flash-001")

  prompt = """
  Can you transcribe this interview, in the format of timecode, speaker, caption.
  Use speaker A, speaker B, etc. to identify speakers.
"""

  audio_file_uri = "gs://cloud-samples-data/generative-ai/audio/pixel.mp3"
  audio_file = Part.from_uri(audio_file_uri, mime_type="audio/mpeg")

  contents = [audio_file, prompt]

  response = model.generate_content(contents)
  print(response.text)

Java

Sebelum mencoba contoh ini, ikuti petunjuk penyiapan Java di Vertex AI panduan memulai. Untuk informasi lebih lanjut, lihat Vertex AI Dokumentasi referensi Java SDK untuk Gemini.

Untuk mengautentikasi ke Vertex AI, siapkan Application Default Kredensial. Untuk informasi selengkapnya, lihat Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

Respons streaming dan non-streaming

Anda dapat memilih apakah model akan menghasilkan respons streaming atau non-streaming. Untuk respons bertahap, Anda menerima setiap respons segera setelah token output-nya dibuat. Untuk respons non-streaming, Anda menerima semua respons setelah semua token output dibuat.

Untuk respons streaming, gunakan metode generateContentStream.

  public ResponseStream<GenerateContentResponse> generateContentStream(Content content)
  

Untuk respons non-streaming, gunakan metode generateContent.

  public GenerateContentResponse generateContent(Content content)
  

Kode contoh

import com.google.cloud.vertexai.VertexAI;
import com.google.cloud.vertexai.api.GenerateContentResponse;
import com.google.cloud.vertexai.generativeai.ContentMaker;
import com.google.cloud.vertexai.generativeai.GenerativeModel;
import com.google.cloud.vertexai.generativeai.PartMaker;
import com.google.cloud.vertexai.generativeai.ResponseHandler;
import java.io.IOException;

public class AudioInputTranscription {

  public static void main(String[] args) throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "your-google-cloud-project-id";
    String location = "us-central1";
    String modelName = "gemini-1.5-flash-001";

    transcribeAudio(projectId, location, modelName);
  }

  // Analyzes the given audio input.
  public static String transcribeAudio(String projectId, String location, String modelName)
      throws IOException {
    // Initialize client that will be used to send requests. This client only needs
    // to be created once, and can be reused for multiple requests.
    try (VertexAI vertexAI = new VertexAI(projectId, location)) {
      String audioUri = "gs://cloud-samples-data/generative-ai/audio/pixel.mp3";

      GenerativeModel model = new GenerativeModel(modelName, vertexAI);
      GenerateContentResponse response = model.generateContent(
          ContentMaker.fromMultiModalData(
              "Can you transcribe this interview, in the format of timecode, speaker, caption.\n"
                  + "Use speaker A, speaker B, etc. to identify speakers.",
              PartMaker.fromMimeTypeAndData("audio/mp3", audioUri)
          ));

      String output = ResponseHandler.getText(response);
      System.out.println(output);

      return output;
    }
  }
}

Node.js

Sebelum mencoba contoh ini, ikuti petunjuk penyiapan Node.js di halaman AI Generatif panduan memulai menggunakan Node.js SDK. Untuk informasi selengkapnya, lihat referensi Node.js SDK untuk Gemini dokumentasi tambahan.

Untuk mengautentikasi ke Vertex AI, siapkan Application Default Kredensial. Untuk informasi selengkapnya, lihat Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

Respons streaming dan non-streaming

Anda dapat memilih apakah model akan menghasilkan respons streaming atau non-streaming. Untuk respons bertahap, Anda menerima setiap respons segera setelah token output-nya dibuat. Untuk respons non-streaming, Anda menerima semua respons setelah semua token output dibuat.

Untuk respons streaming, gunakan generateContentStream.

  const streamingResp = await generativeModel.generateContentStream(request);
  

Untuk respons non-streaming, gunakan metode generateContent.

  const streamingResp = await generativeModel.generateContent(request);
  

Kode contoh

const {VertexAI} = require('@google-cloud/vertexai');

/**
 * TODO(developer): Update these variables before running the sample.
 */
async function transcript_audio(projectId = 'PROJECT_ID') {
  const vertexAI = new VertexAI({project: projectId, location: 'us-central1'});

  const generativeModel = vertexAI.getGenerativeModel({
    model: 'gemini-1.5-flash-001',
  });

  const filePart = {
    file_data: {
      file_uri: 'gs://cloud-samples-data/generative-ai/audio/pixel.mp3',
      mime_type: 'audio/mpeg',
    },
  };
  const textPart = {
    text: `
    Can you transcribe this interview, in the format of timecode, speaker, caption?
    Use speaker A, speaker B, etc. to identify speakers.`,
  };

  const request = {
    contents: [{role: 'user', parts: [filePart, textPart]}],
  };

  const resp = await generativeModel.generateContent(request);
  const contentResponse = await resp.response;
  console.log(JSON.stringify(contentResponse));
}

Go

Sebelum mencoba contoh ini, ikuti petunjuk penyiapan Go di Vertex AI panduan memulai. Untuk informasi lebih lanjut, lihat Vertex AI Go SDK untuk dokumentasi referensi Gemini.

Untuk melakukan autentikasi ke Vertex AI, siapkan Kredensial Default Aplikasi. Untuk informasi selengkapnya, lihat Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

Respons streaming dan non-streaming

Anda dapat memilih apakah model akan menghasilkan respons streaming atau non-streaming. Untuk respons bertahap, Anda menerima setiap respons segera setelah token output-nya dibuat. Untuk respons non-streaming, Anda menerima semua respons setelah semua token output dibuat.

Untuk respons streaming, gunakan GenerateContentStream.

  iter := model.GenerateContentStream(ctx, genai.Text("Tell me a story about a lumberjack and his giant ox. Keep it very short."))
  

Untuk respons non-streaming, gunakan metode GenerateContent.

  resp, err := model.GenerateContent(ctx, genai.Text("What is the average size of a swallow?"))
  

Kode contoh

import (
	"context"
	"errors"
	"fmt"
	"io"
	"mime"
	"path/filepath"

	"cloud.google.com/go/vertexai/genai"
)

// transcribeAudio generates a response into w
func transcribeAudio(w io.Writer, projectID, location, modelName string) error {
	// location := "us-central1"
	// modelName := "gemini-1.5-flash-001"

	ctx := context.Background()

	client, err := genai.NewClient(ctx, projectID, location)
	if err != nil {
		return fmt.Errorf("unable to create client: %w", err)
	}
	defer client.Close()

	model := client.GenerativeModel(modelName)

	// Optional: set an explicit temperature
	model.SetTemperature(0.4)

	// Given an audio file URL, prepare audio file as genai.Part
	img := genai.FileData{
		MIMEType: mime.TypeByExtension(filepath.Ext("pixel.mp3")),
		FileURI:  "gs://cloud-samples-data/generative-ai/audio/pixel.mp3",
	}

	res, err := model.GenerateContent(ctx, img, genai.Text(`
			Can you transcribe this interview, in the format of timecode, speaker, caption.
			Use speaker A, speaker B, etc. to identify speakers.
	`))
	if err != nil {
		return fmt.Errorf("unable to generate contents: %w", err)
	}

	if len(res.Candidates) == 0 ||
		len(res.Candidates[0].Content.Parts) == 0 {
		return errors.New("empty response from model")
	}

	fmt.Fprintf(w, "generated transcript:\n%s\n", res.Candidates[0].Content.Parts[0])
	return nil
}

C#

Sebelum mencoba contoh ini, ikuti petunjuk penyiapan C# di Vertex AI panduan memulai. Untuk informasi lebih lanjut, lihat Vertex AI Dokumentasi referensi C#.

Untuk mengautentikasi ke Vertex AI, siapkan Application Default Kredensial. Untuk informasi selengkapnya, lihat Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

Respons streaming dan non-streaming

Anda dapat memilih apakah model akan menghasilkan respons streaming atau non-streaming. Untuk respons bertahap, Anda menerima setiap respons segera setelah token output-nya dibuat. Untuk respons non-streaming, Anda menerima semua respons setelah semua token output dibuat.

Untuk respons streaming, gunakan metode StreamGenerateContent.

  public virtual PredictionServiceClient.StreamGenerateContentStream StreamGenerateContent(GenerateContentRequest request)
  

Untuk respons non-streaming, gunakan metode GenerateContentAsync.

  public virtual Task<GenerateContentResponse> GenerateContentAsync(GenerateContentRequest request)
  

Untuk informasi selengkapnya tentang cara server dapat menstreaming respons, lihat RPC Streaming.

Kode contoh


using Google.Cloud.AIPlatform.V1;
using System;
using System.Threading.Tasks;

public class AudioInputTranscription
{
    public async Task<string> TranscribeAudio(
        string projectId = "your-project-id",
        string location = "us-central1",
        string publisher = "google",
        string model = "gemini-1.5-flash-001")
    {

        var predictionServiceClient = new PredictionServiceClientBuilder
        {
            Endpoint = $"{location}-aiplatform.googleapis.com"
        }.Build();

        string prompt = @"Can you transcribe this interview, in the format of timecode, speaker, caption.
Use speaker A, speaker B, etc. to identify speakers.";

        var generateContentRequest = new GenerateContentRequest
        {
            Model = $"projects/{projectId}/locations/{location}/publishers/{publisher}/models/{model}",
            Contents =
            {
                new Content
                {
                    Role = "USER",
                    Parts =
                    {
                        new Part { Text = prompt },
                        new Part { FileData = new() { MimeType = "audio/mp3", FileUri = "gs://cloud-samples-data/generative-ai/audio/pixel.mp3" } }
                    }
                }
            }
        };

        GenerateContentResponse response = await predictionServiceClient.GenerateContentAsync(generateContentRequest);

        string responseText = response.Candidates[0].Content.Parts[0].Text;
        Console.WriteLine(responseText);

        return responseText;
    }
}

REST

Setelah Anda menyiapkan lingkungan Anda, Anda dapat menggunakan REST untuk menguji prompt teks. Contoh berikut mengirim permintaan ke penayang endpoint model Google Cloud.

Sebelum menggunakan salah satu data permintaan, lakukan penggantian berikut:

  • LOCATION: Region untuk memproses permintaan. Masukkan wilayah yang didukung. Untuk mengetahui daftar lengkap wilayah yang didukung, lihat Lokasi yang tersedia.

    Klik untuk meluaskan daftar sebagian wilayah yang tersedia

    • us-central1
    • us-west4
    • northamerica-northeast1
    • us-east4
    • us-west1
    • asia-northeast3
    • asia-southeast1
    • asia-northeast1
  • PROJECT_ID: Project ID Anda.
  • FILE_URI: URI Cloud Storage file yang akan disertakan dalam perintah. Objek bucket harus berupa dapat dibaca secara publik atau berada di project Google Cloud yang sama dengan yang mengirim permintaan. Anda juga harus tentukan jenis media (mimeType) file.

    Jika tidak memiliki file audio di Cloud Storage, Anda dapat menggunakan file yang tersedia untuk publik: gs://cloud-samples-data/generative-ai/audio/pixel.mp3 dengan jenis mime audio/mp3. Untuk mendengarkan audio ini, buka sampel MP3 .

  • MIME_TYPE: Jenis media file yang ditentukan dalam data atau fileUri kolom. Nilai yang dapat diterima mencakup:

    Klik untuk meluaskan jenis MIME

    • application/pdf
    • audio/mpeg
    • audio/mp3
    • audio/wav
    • image/png
    • image/jpeg
    • text/plain
    • video/mov
    • video/mpeg
    • video/mp4
    • video/mpg
    • video/avi
    • video/wmv
    • video/mpegps
    • video/flv
  • TEXT
    Petunjuk teks yang harus disertakan dalam perintah. Misalnya, Can you transcribe this interview, in the format of timecode, speaker, caption. Use speaker A, speaker B, etc. to identify speakers.

Untuk mengirim permintaan Anda, pilih salah satu opsi berikut:

curl

Simpan isi permintaan dalam file bernama request.json. Jalankan perintah berikut di terminal untuk membuat atau menimpa file ini di direktori saat ini:

cat > request.json << 'EOF'
{
  "contents": {
    "role": "USER",
    "parts": [
      {
        "fileData": {
          "fileUri": "FILE_URI",
          "mimeType": "MIME_TYPE"
        }
      },
      {
        "text": "TEXT"
      }
    ]
  }
}
EOF

Kemudian, jalankan perintah berikut untuk mengirim permintaan REST Anda:

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/publishers/google/models/gemini-1.5-flash:generateContent"

PowerShell

Simpan isi permintaan dalam file bernama request.json. Jalankan perintah berikut di terminal untuk membuat atau menimpa file ini di direktori saat ini:

@'
{
  "contents": {
    "role": "USER",
    "parts": [
      {
        "fileData": {
          "fileUri": "FILE_URI",
          "mimeType": "MIME_TYPE"
        }
      },
      {
        "text": "TEXT"
      }
    ]
  }
}
'@  | Out-File -FilePath request.json -Encoding utf8

Kemudian, jalankan perintah berikut untuk mengirim permintaan REST Anda:

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/publishers/google/models/gemini-1.5-flash:generateContent" | Select-Object -Expand Content

Anda akan menerima respons JSON yang mirip dengan berikut ini.

Perhatikan hal berikut dalam URL untuk contoh ini:
  • Gunakan generateContent untuk meminta agar respons ditampilkan setelah dibuat sepenuhnya. Untuk mengurangi persepsi latensi kepada audiens manusia, streaming respons secara langsung yang dibuat dengan menggunakan streamGenerateContent .
  • ID model multimodal terletak di akhir URL sebelum metode (misalnya, gemini-1.5-flash atau gemini-1.0-pro-vision). Contoh ini dapat mendukung seperti model AI generatif.

Konsol

Untuk mengirim prompt multimodal menggunakan Konsol Google Cloud, lakukan berikut ini:

  1. Di bagian Vertex AI pada Konsol Google Cloud, buka halaman Vertex AI Studio.

    Buka Vertex AI Studio

  2. Di bagian Prompt design (single turn), klik Open.
  3. Opsional: Konfigurasi model dan parameter:

    • Model: Pilih model.
    • Region: Pilih wilayah yang ingin Anda gunakan.
    • Suhu: Gunakan penggeser atau kotak teks untuk memasukkan nilai suhu.

      Suhu digunakan untuk pengambilan sampel selama pembuatan respons, yang terjadi saat topP dan topK diterapkan. Suhu mengontrol tingkat keacakan dalam pemilihan token. Suhu yang lebih rendah cocok untuk perintah yang memerlukan respons yang kurang terbuka atau kreatif, sedangkan suhu yang lebih tinggi dapat memberikan hasil yang lebih beragam atau kreatif. Suhu 0 berarti token probabilitas tertinggi selalu dipilih. Dalam hal ini, respons untuk permintaan tertentu sebagian besar deterministik, tetapi sedikit variasi masih dapat dilakukan.

      Jika model menampilkan respons yang terlalu umum, terlalu pendek, atau model memberikan fallback respons, coba tingkatkan suhunya.

    • Batas token output: Gunakan penggeser atau kotak teks untuk memasukkan nilai untuk {i>max output limit<i}.

      Jumlah maksimum token yang dapat dibuat dalam respons. Token terdiri dari sekitar empat karakter. 100 token setara dengan sekitar 60-80 kata.

      Tentukan nilai yang lebih rendah untuk respons yang lebih singkat dan nilai yang lebih tinggi untuk respons yang berpotensi lebih lama yang dihasilkan.

    • Tambahkan urutan perhentian: Opsional. Masukkan urutan perhentian, yang merupakan serangkaian karakter yang menyertakan spasi. Jika model menemukan urutan perhentian, pembuatan respons akan berhenti. Urutan perhentian tidak disertakan dalam respons, dan Anda dapat menambahkan hingga lima urutan perhentian.
  4. Opsional: Untuk mengonfigurasi parameter lanjutan, klik Lanjutan dan konfigurasikan sebagai berikut:
  5. Klik untuk meluaskan konfigurasi lanjutan

    • Top-K: Gunakan penggeser atau kotak teks untuk memasukkan nilai untuk top-K (tidak didukung untuk Gemini 1.5).

      Top-K mengubah cara model memilih token untuk output. Top-K 1 berarti token yang dipilih berikutnya adalah yang paling mungkin di antara semua token dalam kosakata model (juga disebut decoding greedy), sedangkan top-K 3 berarti token berikutnya dipilih di antara tiga token yang paling mungkin dengan menggunakan suhu.

      Untuk setiap langkah pemilihan token, token top-K dengan probabilitas tertinggi akan diambil sampelnya. Kemudian token akan difilter lebih lanjut berdasarkan top-P dengan token akhir yang dipilih menggunakan pengambilan sampel suhu.

      Tentukan nilai yang lebih rendah untuk respons acak yang lebih sedikit dan nilai yang lebih tinggi untuk respons acak yang lebih banyak.

    • Top-P: Gunakan penggeser atau kotak teks untuk memasukkan nilai untuk top-P. Token dipilih dari yang paling mungkin hingga yang paling kecil hingga jumlah probabilitasnya sama dengan nilai top-P. Untuk hasil yang paling sedikit variabel, setel top-P ke 0.
    • Aktifkan Grounding: Grounding tidak didukung untuk multimodal prompt.
  6. Untuk mengupload media, seperti file MP3 dan WAV, lakukan berikut ini:
    1. Klik Sisipkan Media, lalu pilih sumber.

      Jika Anda memilih Google Drive sebagai sumber, Anda harus memilih akun dan memberikan izin untuk Vertex AI Studio akan mengakses akun Anda saat pertama kali pilih opsi ini. Anda dapat mengupload beberapa file media yang memiliki berukuran hingga 10 MB. Satu file tidak boleh melebihi 7 MB.

    2. Klik file yang ingin ditambahkan.
    3. Klik Pilih.

      Thumbnail file akan ditampilkan di panel Prompt. Jumlah total token juga akan ditampilkan. Jika data perintah Anda melebihi batas token, token akan dipotong dan tidak disertakan dalam pemrosesan data Anda.

    4. Opsional: Untuk menampilkan jumlah token yang dihitung di file audio Anda dan jumlah semua token, klik View tokens.

      Perlu waktu hingga 15 detik untuk menghitung jumlah token untuk file media. Tampilan ID Token ke teks dan ID Token tidak menampilkan output yang berharga, karena token media tidak didukung.

      Untuk menutup panel alat tokenizer, klik X, atau klik di luar panel.

  7. Masukkan perintah teks Anda di panel Prompt.
  8. Opsional: Untuk menampilkan jumlah token yang dihitung di file audio Anda, jumlah token teks, dan jumlah semua token, klik Lihat token. Anda dapat melihat token atau ID token dari perintah teks Anda.
    • Untuk melihat token dalam perintah teks yang ditandai dengan warna berbeda yang menandai batas setiap ID token, klik Token ID to text. Token media tidak didukung.
    • Untuk melihat ID token, klik ID Token.

      Untuk menutup panel alat tokenizer, klik X, atau klik di luar panel.

  9. Klik Kirim.
  10. Opsional: Untuk menyimpan perintah Anda ke Perintah saya, klik Simpan.
  11. Opsional: Untuk mendapatkan kode Python atau perintah curl untuk perintah Anda, klik Dapatkan kode.

Menetapkan parameter model

Parameter model berikut dapat ditetapkan pada model multimodal:

Top-P

Top-P mengubah cara model memilih token untuk output. Token dipilih dari yang paling mungkin (lihat top-K) hingga yang paling tidak mungkin sampai jumlah probabilitasnya sama dengan nilai top-P. Misalnya, jika token A, B, dan C memiliki probabilitas 0,3, 0,2, dan 0,1 dengan nilai top-P 0.5, model akan memilih A atau B sebagai token berikutnya dengan menggunakan suhu dan mengecualikan C sebagai kandidat.

Tentukan nilai yang lebih rendah untuk respons acak yang lebih sedikit dan nilai yang lebih tinggi untuk respons acak yang lebih banyak.

Temperature (suhu)

Suhu digunakan untuk pengambilan sampel selama pembuatan respons, yang terjadi saat topP dan topK diterapkan. Suhu mengontrol tingkat keacakan dalam pemilihan token. Suhu yang lebih rendah cocok untuk perintah yang memerlukan respons yang kurang terbuka atau kreatif, sedangkan suhu yang lebih tinggi dapat memberikan hasil yang lebih beragam atau kreatif. Suhu 0 berarti token probabilitas tertinggi selalu dipilih. Dalam hal ini, respons untuk permintaan tertentu sebagian besar deterministik, tetapi sedikit variasi masih dapat dilakukan.

Jika model menampilkan respons yang terlalu umum, terlalu pendek, atau model memberikan fallback respons, coba tingkatkan suhunya.

Parameter value yang valid

Parameter Gemini 1.5 Pro Flash Gemini 1.5
Top-P 0 - 1.0 (default 0.95) 0 - 1.0 (default 0.95)
Temperature (suhu) 0 - 2.0 (default 1.0) 0 - 2.0 (default 1.0)

Persyaratan audio

Model multimodal Gemini mendukung jenis MIME audio berikut:

Jenis MIME audio Flash Gemini 1.5 Gemini 1.5 Pro
AAC - audio/aac
FLAC - audio/flac
MP3 - audio/mp3
MPA - audio/m4a
MPEG - audio/mpeg
MPGA - audio/mpga
MP4 - audio/mp4
OPUS - audio/opus
PCM - audio/pcm
WAV - audio/wav
WEBM - audio/webm

Anda dapat menyertakan maksimal 1 file audio dalam permintaan perintah.

Batasan

Meskipun model multimodal Gemini sangat canggih dalam banyak penggunaan multimodal kasus tersebut, penting untuk memahami keterbatasan model tersebut:

  • Pengenalan suara non-ucapan: Model yang mendukung audio dapat membuat kesalahan dalam mengenali suara yang bukan ucapan.
  • Stempel waktu audio saja: Model yang mendukung audio tidak dapat membuat stempel waktu secara akurat untuk permintaan dengan file audio. Ini mencakup stempel waktu segmentasi dan pelokalan sementara. Stempel waktu dapat dibuat secara akurat untuk input yang menyertakan video yang berisi audio.
  • Tanda baca transkripsi: (jika menggunakan Gemini 1.5 Flash) Model tersebut mungkin mengembalikan transkripsi yang tidak menyertakan tanda baca.

Langkah selanjutnya