比如说,您可以使用 LangChain on Vertex AI 创建一个小型应用来返回指定日期两种货币之间的汇率。
您可以定义自己的 Python 类(请参阅自定义应用模板),也可以使用 Vertex AI SDK for Python 中适用于您的代理的 LangchainAgent
类。以下步骤演示了如何使用 LangchainAgent
预构建模板创建此应用:
准备工作
在运行本教程之前,请确保按照设置环境中的步骤设置您的环境。
第 1 步:定义和配置模型
请按照以下步骤定义和配置模型:
您需要定义要使用的模型版本。
model = "gemini-1.5-flash-001"
(可选)您可以配置模型的安全设置。如需详细了解可用于在 Gemini 中配置安全设置的选项,请参阅配置安全属性。
以下示例展示了如何配置安全设置:
from langchain_google_vertexai import HarmBlockThreshold, HarmCategory safety_settings = { HarmCategory.HARM_CATEGORY_UNSPECIFIED: HarmBlockThreshold.BLOCK_NONE, HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT: HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE, HarmCategory.HARM_CATEGORY_HATE_SPEECH: HarmBlockThreshold.BLOCK_ONLY_HIGH, HarmCategory.HARM_CATEGORY_HARASSMENT: HarmBlockThreshold.BLOCK_LOW_AND_ABOVE, HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT: HarmBlockThreshold.BLOCK_NONE, }
(可选)您可以通过以下方式指定模型参数:
model_kwargs = { # temperature (float): The sampling temperature controls the degree of # randomness in token selection. "temperature": 0.28, # max_output_tokens (int): The token limit determines the maximum amount of # text output from one prompt. "max_output_tokens": 1000, # top_p (float): Tokens are selected from most probable to least until # the sum of their probabilities equals the top-p value. "top_p": 0.95, # top_k (int): The next token is selected from among the top-k most # probable tokens. This is not supported by all model versions. See # https://cloud.google.com/vertex-ai/generative-ai/docs/multimodal/image-understanding#valid_parameter_values # for details. "top_k": None, # safety_settings (Dict[HarmCategory, HarmBlockThreshold]): The safety # settings to use for generating content. # (you must create your safety settings using the previous step first). "safety_settings": safety_settings, }
现在,您可以使用模型配置创建和查询 LangchainAgent
:
agent = reasoning_engines.LangchainAgent(
model=model, # Required.
model_kwargs=model_kwargs, # Optional.
)
response = agent.query(input="What is the exchange rate from US dollars to Swedish currency?")
响应是一个 Python 字典,类似于以下示例:
{"input": "What is the exchange rate from US dollars to Swedish currency?",
"output": """I cannot provide the live exchange rate from US dollars to Swedish currency (Swedish krona, SEK).
**Here's why:**
* **Exchange rates constantly fluctuate.** Factors like global economics, interest rates, and political events cause
these changes throughout the day.
* **Providing inaccurate information would be misleading.**
**How to find the current exchange rate:**
1. **Use a reliable online converter:** Many websites specialize in live exchange rates. Some popular options include:
* Google Finance (google.com/finance)
* XE.com
* Bank websites (like Bank of America, Chase, etc.)
2. **Contact your bank or financial institution:** They can give you the exact exchange rate they are using.
Remember to factor in any fees or commissions when exchanging currency.
"""}
(可选)高级自定义
LangchainAgent
模板默认使用 ChatVertexAI
,因为它可提供对 Google Cloud 中所有基础模型的访问权限。如需使用无法通过 ChatVertexAI
获取的模型,您可以使用具有以下签名的 Python 函数指定 model_builder=
参数:
from typing import Optional
def model_builder(
*,
model_name: str, # Required. The name of the model
model_kwargs: Optional[dict] = None, # Optional. The model keyword arguments.
**kwargs, # Optional. The remaining keyword arguments to be ignored.
):
如需查看 LangChain 中支持的聊天模型及其功能的列表,请参阅聊天模型。model=
和 model_kwargs=
的一组支持的值因聊天模型而异,因此您必须参阅相应的文档了解详情。
ChatVertexAI
默认安装。
当您省略 model_builder
参数时,它会在 LangchainAgent
模板中使用,例如
agent = reasoning_engines.LangchainAgent(
model=model, # Required.
model_kwargs=model_kwargs, # Optional.
)
ChatAnthropic
首先,按照他们的文档设置账号并安装软件包。
接下来,定义一个返回 ChatAnthropic
的 model_builder
:
def model_builder(*, model_name: str, model_kwargs = None, **kwargs):
from langchain_anthropic import ChatAnthropic
return ChatAnthropic(model_name=model_name, **model_kwargs)
最后,使用以下代码在 LangchainAgent
模板中使用它:
agent = reasoning_engines.LangchainAgent(
model="claude-3-opus-20240229", # Required.
model_builder=model_builder, # Required.
model_kwargs={
"api_key": "ANTHROPIC_API_KEY", # Required.
"temperature": 0.28, # Optional.
"max_tokens": 1000, # Optional.
},
)
ChatOpenAI
您可以将 ChatOpenAI
与 Gemini 的 ChatCompletions API 搭配使用。
首先,按照其文档安装软件包。
接下来,定义一个返回 ChatOpenAI
的 model_builder
:
def model_builder(
*,
model_name: str,
model_kwargs = None,
project: str, # Specified via vertexai.init
location: str, # Specified via vertexai.init
**kwargs,
):
import google.auth
from langchain_openai import ChatOpenAI
# Note: the credential lives for 1 hour by default.
# After expiration, it must be refreshed.
creds, _ = google.auth.default(scopes=["https://www.googleapis.com/auth/cloud-platform"])
auth_req = google.auth.transport.requests.Request()
creds.refresh(auth_req)
if model_kwargs is None:
model_kwargs = {}
endpoint = f"https://{location}-aiplatform.googleapis.com"
base_url = f'{endpoint}/v1beta1/projects/{project}/locations/{location}/endpoints/openapi'
return ChatOpenAI(
model=model_name,
base_url=base_url,
api_key=creds.token,
**model_kwargs,
)
最后,使用以下代码在 LangchainAgent
模板中使用它:
agent = reasoning_engines.LangchainAgent(
model="google/gemini-1.5-pro-001", # Or "meta/llama3-405b-instruct-maas"
model_builder=model_builder, # Required.
model_kwargs={
"temperature": 0, # Optional.
"max_retries": 2, # Optional.
},
)
第 2 步:定义和使用工具
定义模型后,下一步是定义模型用于推理的工具。这里的工具可以是 LangChain 工具,也可以是 Python 函数。您还可以将定义的 Python 函数转换为 LangChain 工具。此应用使用函数定义。
定义函数时,请务必添加能完整而清晰地描述函数的参数、函数的用途以及函数返回内容的注释。模型会使用此信息来确定要使用的函数。您还必须在本地测试函数,以确认其是否正常运行。
使用以下代码定义一个返回汇率的函数:
def get_exchange_rate(
currency_from: str = "USD",
currency_to: str = "EUR",
currency_date: str = "latest",
):
"""Retrieves the exchange rate between two currencies on a specified date.
Uses the Frankfurter API (https://api.frankfurter.app/) to obtain
exchange rate data.
Args:
currency_from: The base currency (3-letter currency code).
Defaults to "USD" (US Dollar).
currency_to: The target currency (3-letter currency code).
Defaults to "EUR" (Euro).
currency_date: The date for which to retrieve the exchange rate.
Defaults to "latest" for the most recent exchange rate data.
Can be specified in YYYY-MM-DD format for historical rates.
Returns:
dict: A dictionary containing the exchange rate information.
Example: {"amount": 1.0, "base": "USD", "date": "2023-11-24",
"rates": {"EUR": 0.95534}}
"""
import requests
response = requests.get(
f"https://api.frankfurter.app/{currency_date}",
params={"from": currency_from, "to": currency_to},
)
return response.json()
如需在应用中使用函数之前先对其进行测试,请运行以下命令:
get_exchange_rate(currency_from="USD", currency_to="SEK")
响应应该类似以下内容:
{'amount': 1.0, 'base': 'USD', 'date': '2024-02-22', 'rates': {'SEK': 10.3043}}
如需在 LangchainAgent
模板中使用该工具,您需要将其添加到 tools=
参数下的工具列表中:
agent = reasoning_engines.LangchainAgent(
model=model, # Required.
tools=[get_exchange_rate], # Optional.
model_kwargs=model_kwargs, # Optional.
)
您可以通过对应用发起测试查询来测试该应用。运行以下命令,使用美元和瑞典克朗测试应用:
response = agent.query(
input="What is the exchange rate from US dollars to Swedish currency?"
)
响应是一个类似于以下内容的字典:
{"input": "What is the exchange rate from US dollars to Swedish currency?",
"output": "For 1 US dollar you will get 10.7345 Swedish Krona."}
(可选)多种工具
您可以通过其他方式定义和实例化 LangchainAgent
工具。
接地工具
首先,导入 generate_models
软件包并创建工具
from vertexai.generative_models import grounding, Tool
grounded_search_tool = Tool.from_google_search_retrieval(
grounding.GoogleSearchRetrieval()
)
接下来,在 LangchainAgent
模板中使用该工具:
agent = reasoning_engines.LangchainAgent(
model=model,
tools=[grounded_search_tool],
)
agent.query(input="When is the next total solar eclipse in US?")
响应是一个类似于以下内容的字典:
{"input": "When is the next total solar eclipse in US?",
"output": """The next total solar eclipse in the U.S. will be on August 23, 2044.
This eclipse will be visible from three states: Montana, North Dakota, and
South Dakota. The path of totality will begin in Greenland, travel through
Canada, and end around sunset in the United States."""}
如需了解详情,请参阅依据。
LangChain 工具
首先,安装用于定义该工具的软件包。
pip install langchain-google-community
接下来,导入软件包并创建工具。
from langchain_google_community import VertexAISearchRetriever
from langchain.tools.retriever import create_retriever_tool
retriever = VertexAISearchRetriever(
project_id="PROJECT_ID",
data_store_id="DATA_STORE_ID",
location_id="DATA_STORE_LOCATION_ID",
engine_data_type=1,
max_documents=10,
)
movie_search_tool = create_retriever_tool(
retriever=retriever,
name="search_movies",
description="Searches information about movies.",
)
最后,在 LangchainAgent
模板中使用该工具:
agent = reasoning_engines.LangchainAgent(
model=model,
tools=[movie_search_tool],
)
response = agent.query(
input="List some sci-fi movies from the 1990s",
)
它应返回如下所示的响应
{"input": "List some sci-fi movies from the 1990s",
"output": """Here are some sci-fi movies from the 1990s:
* The Matrix (1999): A computer hacker learns from mysterious rebels about the true nature of his reality and his role in the war against its controllers.
* Star Wars: Episode I - The Phantom Menace (1999): Two Jedi Knights escape a hostile blockade to find a queen and her protector, and come across a young boy [...]
* Men in Black (1997): A police officer joins a secret organization that monitors extraterrestrial interactions on Earth.
[...]
"""}
如需查看完整示例,请访问笔记本。
如需查看 LangChain 中提供的更多工具示例,请访问 Google 工具。
Vertex AI Extensions
首先,导入扩展程序软件包并创建工具
from typing import Optional
def generate_and_execute_code(
query: str,
files: Optional[list[str]] = None,
file_gcs_uris: Optional[list[str]] = None,
) -> str:
"""Get the results of a natural language query by generating and executing
a code snippet.
Example queries: "Find the max in [1, 2, 5]" or "Plot average sales by
year (from data.csv)". Only one of `file_gcs_uris` and `files` field
should be provided.
Args:
query:
The natural language query to generate and execute.
file_gcs_uris:
Optional. URIs of input files to use when executing the code
snippet. For example, ["gs://input-bucket/data.csv"].
files:
Optional. Input files to use when executing the generated code.
If specified, the file contents are expected be base64-encoded.
For example: [{"name": "data.csv", "contents": "aXRlbTEsaXRlbTI="}].
Returns:
The results of the query.
"""
operation_params = {"query": query}
if files:
operation_params["files"] = files
if file_gcs_uris:
operation_params["file_gcs_uris"] = file_gcs_uris
from vertexai.preview import extensions
# If you have an existing extension instance, you can get it here
# i.e. code_interpreter = extensions.Extension(resource_name).
code_interpreter = extensions.Extension.from_hub("code_interpreter")
return extensions.Extension.from_hub("code_interpreter").execute(
operation_id="generate_and_execute",
operation_params=operation_params,
)
接下来,在 LangchainAgent
模板中使用该工具:
agent = reasoning_engines.LangchainAgent(
model=model,
tools=[generate_and_execute_code],
)
agent.query(
input="""Using the data below, construct a bar chart that includes only the height values with different colors for the bars:
tree_heights_prices = {
\"Pine\": {\"height\": 100, \"price\": 100},
\"Oak\": {\"height\": 65, \"price\": 135},
\"Birch\": {\"height\": 45, \"price\": 80},
\"Redwood\": {\"height\": 200, \"price\": 200},
\"Fir\": {\"height\": 180, \"price\": 162},
}
"""
)
它应返回如下所示的响应
{"input": """Using the data below, construct a bar chart that includes only the height values with different colors for the bars:
tree_heights_prices = {
\"Pine\": {\"height\": 100, \"price\": 100},
\"Oak\": {\"height\": 65, \"price\": 135},
\"Birch\": {\"height\": 45, \"price\": 80},
\"Redwood\": {\"height\": 200, \"price\": 200},
\"Fir\": {\"height\": 180, \"price\": 162},
}
""",
"output": """Here's the generated bar chart:
```python
import matplotlib.pyplot as plt
tree_heights_prices = {
"Pine": {"height": 100, "price": 100},
"Oak": {"height": 65, "price": 135},
"Birch": {"height": 45, "price": 80},
"Redwood": {"height": 200, "price": 200},
"Fir": {"height": 180, "price": 162},
}
heights = [tree["height"] for tree in tree_heights_prices.values()]
names = list(tree_heights_prices.keys())
plt.bar(names, heights, color=['red', 'green', 'blue', 'purple', 'orange'])
plt.xlabel('Tree Species')
plt.ylabel('Height')
plt.title('Tree Heights')
plt.show()
```
"""}
如需了解详情,请参阅 Vertex AI 扩展。
您可以使用自己在 LangchainAgent
中创建的所有(或部分)工具:
agent = reasoning_engines.LangchainAgent(
model=model,
tools=[
get_exchange_rate, # Optional (Python function)
grounded_search_tool, # Optional (Grounding Tool)
movie_search_tool, # Optional (Langchain Tool)
generate_and_execute_code, # Optional (Vertex Extension)
],
)
agent.query(input="When is the next total solar eclipse in US?")
(可选)工具配置
借助 Gemini,您可以对工具使用情况施加限制。例如,您可以强制模型仅生成函数调用(“强制函数调用”),而不是允许模型生成自然语言回答。
from vertexai.preview.generative_models import ToolConfig
agent = reasoning_engines.LangchainAgent(
model="gemini-1.5-pro",
tools=[search_arxiv, get_exchange_rate],
model_tool_kwargs={
"tool_config": { # Specify the tool configuration here.
"function_calling_config": {
"mode": ToolConfig.FunctionCallingConfig.Mode.ANY,
"allowed_function_names": ["search_arxiv", "get_exchange_rate"],
},
},
},
)
agent.query(
input="Explain the Schrodinger equation in a few sentences",
)
如需了解详情,请参阅工具配置。
第 3 步:存储聊天记录
如需跟踪聊天消息并将其附加到数据库,请定义 get_session_history
函数,并在创建代理时传入该函数。此函数应接受 session_id
并返回 BaseChatMessageHistory
对象。
session_id
是这些输入消息所属会话的标识符。这样,您就可以同时进行多个对话。BaseChatMessageHistory
是可加载和保存消息对象的类的接口。
设置数据库
如需查看 LangChain 中支持的 Google ChatMessageHistory
提供程序的列表,请参阅内存。
Firestore(原生)
首先,按照 LangChain 的文档设置数据库并安装软件包。
接下来,按如下方式定义 get_session_history
函数:
def get_session_history(session_id: str):
from langchain_google_firestore import FirestoreChatMessageHistory
from google.cloud import firestore
client = firestore.Client(project="PROJECT_ID")
return FirestoreChatMessageHistory(
client=client,
session_id=session_id,
collection="TABLE_NAME",
encode_message=False,
)
创建代理并将其作为 chat_history
传入:
agent = reasoning_engines.LangchainAgent(
model=model,
chat_history=get_session_history, # <- new
)
Bigtable
首先,按照 LangChain 的文档设置数据库并安装软件包。
接下来,按如下方式定义 get_session_history
函数:
def get_session_history(session_id: str):
from langchain_google_bigtable import BigtableChatMessageHistory
return BigtableChatMessageHistory(
instance_id="INSTANCE_ID",
table_id="TABLE_NAME",
session_id=session_id,
)
创建代理并将其作为 chat_history
传入:
agent = reasoning_engines.LangchainAgent(
model=model,
chat_history=get_session_history, # <- new
)
Spanner
首先,按照 LangChain 的文档设置数据库并安装软件包。
接下来,按如下方式定义 get_session_history
函数:
def get_session_history(session_id: str):
from langchain_google_spanner import SpannerChatMessageHistory
return SpannerChatMessageHistory(
instance_id="INSTANCE_ID",
database_id="DATABASE_ID",
table_name="TABLE_NAME",
session_id=session_id,
)
创建代理并将其作为 chat_history
传入:
agent = reasoning_engines.LangchainAgent(
model=model,
chat_history=get_session_history, # <- new
)
在向客服人员查询时,请务必传入 session_id
,以便客服人员“记住”过往的问题和答案:
agent.query(
input="What is the exchange rate from US dollars to Swedish currency?",
config={"configurable": {"session_id": "SESSION_ID"}},
)
第 4 步:自定义提示模板
提示模板有助于将用户输入转换为模型的说明,并用于指导模型的回答,帮助其理解上下文并生成相关且连贯的语言输出。如需了解详情,请参阅 ChatPromptTemplates。
默认的提示模板会按顺序分为多个部分。
段 | 说明 |
---|---|
(可选)系统说明 | 要应用于所有查询的代理说明。 |
(可选)Chat 记录 | 与过往会话的聊天记录对应的消息。 |
用户输入 | 用户向客服人员提出的询问。 |
客服助理记事板 | 智能体在使用其工具和执行推理来为用户制定回复时创建的消息(例如通过函数调用)。 |
如果您在创建代理时未指定自己的提示模板,系统会生成默认提示模板,其完整内容如下所示:
from langchain_core.prompts import ChatPromptTemplate
from langchain.agents.format_scratchpad.tools import format_to_tool_messages
prompt_template = {
"user_input": lambda x: x["input"],
"history": lambda x: x["history"],
"agent_scratchpad": lambda x: format_to_tool_messages(x["intermediate_steps"]),
} | ChatPromptTemplate.from_messages([
("system", "{system_instruction}"),
("placeholder", "{history}"),
("user", "{user_input}"),
("placeholder", "{agent_scratchpad}"),
])
您可以使用自己的提示模板替换默认提示模板,并在构建代理时使用该模板,例如:
custom_prompt_template = {
"user_input": lambda x: x["input"],
"history": lambda x: x["history"],
"agent_scratchpad": lambda x: format_to_tool_messages(x["intermediate_steps"]),
} | ChatPromptTemplate.from_messages([
("placeholder", "{history}"),
("user", "{user_input}"),
("placeholder", "{agent_scratchpad}"),
])
agent = reasoning_engines.LangchainAgent(
model=model,
prompt=custom_prompt_template,
chat_history=get_session_history,
tools=[get_exchange_rate],
)
agent.query(
input="What is the exchange rate from US dollars to Swedish currency?",
config={"configurable": {"session_id": "SESSION_ID"}},
)
第 5 步:自定义编排
所有 LangChain 组件都实现了 Runnable 接口,该接口会为编排提供输入和输出架构。LangchainAgent
需要构建一个可运行项,以便响应查询。默认情况下,LangchainAgent
将通过使用工具绑定模型来构建此类可运行程序,并在启用聊天记录时使用封装到 RunnableWithMessageHistory
中的 AgentExecutor
。
如果您打算 (i) 实现执行一组确定性步骤(而非执行开放式推理)的代理,或者 (ii) 以类似 ReAct 的方式提示代理为每个步骤添加注释,说明执行该步骤的原因,则可能需要自定义编排。为此,您必须在创建 LangchainAgent
时替换默认的可运行项,方法是使用具有以下签名的 Python 函数指定 runnable_builder=
实参:
from typing import Optional
from langchain_core.language_models import BaseLanguageModel
def runnable_builder(
model: BaseLanguageModel,
*,
system_instruction: Optional[str] = None,
prompt: Optional["RunnableSerializable"] = None,
tools: Optional[Sequence["_ToolLike"]] = None,
chat_history: Optional["GetSessionHistoryCallable"] = None,
model_tool_kwargs: Optional[Mapping[str, Any]] = None,
agent_executor_kwargs: Optional[Mapping[str, Any]] = None,
runnable_kwargs: Optional[Mapping[str, Any]] = None,
**kwargs,
):
其中
model
对应于从model_builder
返回的聊天模型(请参阅定义和配置模型),tools
和model_tool_kwargs
对应于要使用的工具和配置(请参阅定义和使用工具),chat_history
对应于用于存储聊天消息的数据库(请参阅存储聊天记录),system_instruction
和prompt
对应于提示配置(请参阅自定义提示模板),agent_executor_kwargs
和runnable_kwargs
是可用于自定义要构建的可运行程序的关键字参数。
这样,您就可以使用不同的选项来自定义编排逻辑。
ChatModel
在最简单的情况下,如需在不进行编排的情况下创建代理,您可以替换 LangchainAgent
的 runnable_builder
以直接返回 model
。
from langchain_core.language_models import BaseLanguageModel
def llm_builder(model: BaseLanguageModel, **kwargs):
return model
agent = reasoning_engines.LangchainAgent(
model=model,
runnable_builder=llm_builder,
)
ReAct
如需使用基于您自己的 prompt
的自定义 ReAct 代理替换默认的调用工具行为(请参阅自定义提示模板),您需要替换 LangchainAgent
的 runnable_builder
。
from typing import Sequence
from langchain_core.language_models import BaseLanguageModel
from langchain_core.prompts import BasePromptTemplate
from langchain_core.tools import BaseTool
from langchain import hub
def react_builder(
model: BaseLanguageModel,
*,
tools: Sequence[BaseTool],
prompt: BasePromptTemplate,
agent_executor_kwargs = None,
**kwargs,
):
from langchain.agents.react.agent import create_react_agent
from langchain.agents import AgentExecutor
agent = create_react_agent(model, tools, prompt)
return AgentExecutor(agent=agent, tools=tools, **agent_executor_kwargs)
agent = reasoning_engines.LangchainAgent(
model=model,
tools=[get_exchange_rate],
prompt=hub.pull("hwchase17/react"),
agent_executor_kwargs={"verbose": True}, # Optional. For illustration.
runnable_builder=react_builder,
)
LCEL 语法
如需使用 LangChain 表达式语言 (LCEL) 构建以下图表,请执行以下操作:
Input
/ \
Pros Cons
\ /
Summary
您需要替换 LangchainAgent
的 runnable_builder
:
def lcel_builder(*, model, **kwargs):
from operator import itemgetter
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.runnables import RunnablePassthrough
from langchain_core.output_parsers import StrOutputParser
output_parser = StrOutputParser()
planner = ChatPromptTemplate.from_template(
"Generate an argument about: {input}"
) | model | output_parser | {"argument": RunnablePassthrough()}
pros = ChatPromptTemplate.from_template(
"List the positive aspects of {argument}"
) | model | output_parser
cons = ChatPromptTemplate.from_template(
"List the negative aspects of {argument}"
) | model | output_parser
final_responder = ChatPromptTemplate.from_template(
"Argument:{argument}\nPros:\n{pros}\n\nCons:\n{cons}\n"
"Generate a final response given the critique",
) | model | output_parser
return planner | {
"pros": pros,
"cons": cons,
"argument": itemgetter("argument"),
} | final_responder
agent = reasoning_engines.LangchainAgent(
model=model,
runnable_builder=lcel_builder,
)
LangGraph
如需使用 LangGraph 构建以下图表,请执行以下操作:
Input
/ \
Pros Cons
\ /
Summary
您需要替换 LangchainAgent
的 runnable_builder
:
def langgraph_builder(*, model, **kwargs):
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.output_parsers import StrOutputParser
from langgraph.graph import END, MessageGraph
output_parser = StrOutputParser()
planner = ChatPromptTemplate.from_template(
"Generate an argument about: {input}"
) | model | output_parser
pros = ChatPromptTemplate.from_template(
"List the positive aspects of {input}"
) | model | output_parser
cons = ChatPromptTemplate.from_template(
"List the negative aspects of {input}"
) | model | output_parser
summary = ChatPromptTemplate.from_template(
"Input:{input}\nGenerate a final response given the critique",
) | model | output_parser
builder = MessageGraph()
builder.add_node("planner", planner)
builder.add_node("pros", pros)
builder.add_node("cons", cons)
builder.add_node("summary", summary)
builder.add_edge("planner", "pros")
builder.add_edge("planner", "cons")
builder.add_edge("pros", "summary")
builder.add_edge("cons", "summary")
builder.add_edge("summary", END)
builder.set_entry_point("planner")
return builder.compile()
agent = reasoning_engines.LangchainAgent(
model=model,
runnable_builder=langgraph_builder,
)
# Example query
agent.query(input={"role": "user", "content": "scrum methodology"})