Python の RAG クイックスタート

このページでは、Vertex AI SDK を使用して Vertex AI RAG Engine タスクを実行する方法について説明します。

このノートブック Vertex AI RAG Engine の概要を使用して、手順に沿って操作することもできます。

Google Cloud コンソールを準備する

Vertex AI RAG Engine を使用する手順は次のとおりです。

  1. Vertex AI SDK for Python をインストールします

  2. Google Cloud コンソールで次のコマンドを実行して、プロジェクトを設定します。

    gcloud config set {project}

  3. 次のコマンドを実行して、ログインを承認します。

    gcloud auth application-default login

Vertex AI RAG Engine を実行する

このサンプルコードをコピーして Google Cloud コンソールに貼り付け、Vertex AI RAG Engine を実行します。

Python

from vertexai import rag
from vertexai.generative_models import GenerativeModel, Tool
import vertexai

# Create a RAG Corpus, Import Files, and Generate a response

# TODO(developer): Update and un-comment below lines
# PROJECT_ID = "your-project-id"
# display_name = "test_corpus"
# paths = ["https://drive.google.com/file/d/123", "gs://my_bucket/my_files_dir"]  # Supports Google Cloud Storage and Google Drive Links

# Initialize Vertex AI API once per session
vertexai.init(project=PROJECT_ID, location="us-central1")

# Create RagCorpus
# Configure embedding model, for example "text-embedding-005".
embedding_model_config = rag.RagEmbeddingModelConfig(
      vertex_prediction_endpoint=rag.VertexPredictionEndpoint(
          publisher_model="publishers/google/models/text-embedding-005"
      )
)

# Setup a display name of the corpus
display_name = "your_display_name"
backend_config = rag.RagVectorDbConfig(rag_embedding_model_config=embedding_model_config)

rag_corpus = rag.create_corpus(
    display_name=display_name,
    backend_config=backend_config,
)

# List the rag corpus you just created
rag.list_corpora()

# Import Files to the RagCorpus
# choose a corpus to import files to, you can use rag_corpus.name for just created corpus
# or use the name in list_corpora()
corpus_name = rag_corpus.name

transformation_config = rag.TransformationConfig(
      chunking_config=rag.ChunkingConfig(
          chunk_size=512,
          chunk_overlap=100,
      ),
  )

rag.import_files(
    corpus_name,
    paths,
    transformation_config=transformation_config, # Optional
    max_embedding_requests_per_min=1000,  # Optional
)

# Alternatively, you can use async import
response = await rag.import_files_async(
  corpus_name,
  paths,
  transformation_config=transformation_config, # Optional
  max_embedding_requests_per_min=1000,  # Optional
)
result = await response.result()
print(result)

# List the files in the rag corpus
rag.list_files(corpus_name)

# Direct context retrieval
rag_retrieval_config=rag.RagRetrievalConfig(
    top_k=3,  # Optional
    filter=rag.Filter(vector_distance_threshold=0.5)  # Optional
)
response = rag.retrieval_query(
    rag_resources=[
        rag.RagResource(
            rag_corpus=corpus_name,
            # Optional: supply IDs from `rag.list_files()`.
            # rag_file_ids=["rag-file-1", "rag-file-2", ...],
        )
    ],
    text="What is RAG and why it is helpful?",
    rag_retrieval_config=rag_retrieval_config,
)
print(response)

# Enhance generation
# Create a RAG retrieval tool
rag_retrieval_tool = Tool.from_retrieval(
    retrieval=rag.Retrieval(
        source=rag.VertexRagStore(
            rag_resources=[
                rag.RagResource(
                    rag_corpus=corpus_name,  # Currently only 1 corpus is allowed.
                    # Optional: supply IDs from `rag.list_files()`.
                    # rag_file_ids=["rag-file-1", "rag-file-2", ...],
                )
            ],
            rag_retrieval_config=rag_retrieval_config,
        ),
    )
)
# Create a gemini model instance
rag_model = GenerativeModel(
    model_name="gemini-2.0-flash-001", tools=[rag_retrieval_tool]
)

# Generate response
response = rag_model.generate_content("What is RAG and why it is helpful?")
print(response.text)
# Example response:
#   RAG stands for Retrieval-Augmented Generation.
#   It's a technique used in AI to enhance the quality of responses
# ...

次のステップ