A partir de 29 de abril de 2025, os modelos Gemini 1.5 Pro e Gemini 1.5 Flash não estarão disponíveis em projetos que não os usaram antes, incluindo novos projetos. Para mais detalhes, consulte Versões e ciclo de vida do modelo.
Mantenha tudo organizado com as coleções
Salve e categorize o conteúdo com base nas suas preferências.
Esta página fornece pré-requisitos e instruções detalhadas para ajustar
o Gemini em dados de áudio usando o aprendizado supervisionado.
Casos de uso
O ajuste de modelos de áudio melhora o desempenho deles ao adaptá-los a necessidades
específicas. Isso pode envolver a melhoria do reconhecimento de fala para diferentes sotaques,
o ajuste fino da classificação de gêneros musicais, a otimização da detecção de eventos sonoros,
a personalização da geração de áudio, a adaptação a ambientes barulhentos, a melhoria da
qualidade de áudio e a personalização de experiências de áudio. Confira alguns casos de uso comuns de ajuste
de áudio:
Assistentes de voz aprimorados:
Pedir comida por voz: desenvolver sistemas ativados por voz para pedir e entregar comida com facilidade.
Análise de conteúdo de áudio:
Transcrição automática: gere transcrições altamente precisas, mesmo em ambientes barulhentos.
Resumo de áudio: resuma os pontos principais de podcasts ou audiolivros.
Classificação de músicas: categorizar músicas com base no gênero, no humor ou em outras características.
Acessibilidade e tecnologias adaptativas:
Legendas em tempo real: ofereça legendas ao vivo para eventos ou videochamadas.
Aplicativos controlados por voz: desenvolva apps controlados totalmente por voz.
Aprendizado de idiomas: crie ferramentas que ofereçam feedback personalizado sobre pronúncia.
Limitações
Duração máxima do áudio por exemplo: 10 minutos.
Número máximo de arquivos de áudio por exemplo: 1.
{"contents":[{"role":"user","parts":[{"fileData":{"mimeType":"audio/mpeg","fileUri":"gs://cloud-samples-data/generative-ai/audio/pixel.mp3"}},{"text":"Please summarize the conversation in one sentence."}]},{"role":"model","parts":[{"text":"The podcast episode features two product managers for Pixel devices discussing the new features coming to Pixel phones and watches."}]}]}
[[["Fácil de entender","easyToUnderstand","thumb-up"],["Meu problema foi resolvido","solvedMyProblem","thumb-up"],["Outro","otherUp","thumb-up"]],[["Difícil de entender","hardToUnderstand","thumb-down"],["Informações incorretas ou exemplo de código","incorrectInformationOrSampleCode","thumb-down"],["Não contém as informações/amostras de que eu preciso","missingTheInformationSamplesINeed","thumb-down"],["Problema na tradução","translationIssue","thumb-down"],["Outro","otherDown","thumb-down"]],["Última atualização 2025-08-19 UTC."],[],[],null,["# Audio Tuning\n\nThis page provides prerequisites and detailed instructions for fine-tuning\nGemini on audio data using supervised learning.\n\nUse cases\n---------\n\nTuning audio models enhances their performance by tailoring them to specific\nneeds. This can involve improving speech recognition for different accents,\nfine-tuning music genre classification, optimizing sound event detection,\ncustomizing audio generation, adapting to noisy environments, improving audio\nquality, and personalizing audio experiences. Here are some common audio tuning use\ncases:\n\n- **Enhanced voice assistants**:\n\n - Voice food ordering: Develop voice-activated systems for seamless food ordering and delivery.\n- **Audio content analysis**:\n\n - Automated transcription: Generate highly accurate transcripts, even in noisy environments.\n - Audio summarization: Summarize key points from podcasts or audiobooks.\n - Music classification: Categorize music based on genre, mood, or other characteristics.\n- **Accessibility and assistive technologies**:\n\n - Real-time captioning: Provide live captions for events or video calls.\n - Voice-controlled applications: Develop applications controlled entirely by voice.\n - Language learning: Create tools that provide personalized feedback on pronunciation.\n\nLimitations\n-----------\n\n### Gemini 2.5 models\n\n### Gemini 2.0 Flash\nGemini 2.0 Flash-Lite\n\nTo learn more about audio sample requirements, see the [Audio understanding (speech only)](/vertex-ai/generative-ai/docs/multimodal/audio-understanding#audio-requirements) page.\n\nDataset format\n--------------\n\nThe `fileUri` for your dataset can be the URI for a file in a Cloud Storage\nbucket, or it can be a publicly available HTTP or HTTPS URL.\n\nTo see the generic format example, see\n[Dataset example for Gemini](/vertex-ai/generative-ai/docs/models/gemini-supervised-tuning-prepare#dataset-example).\n\nThe following is an example of an audio dataset. \n\n {\n \"contents\": [\n {\n \"role\": \"user\",\n \"parts\": [\n {\n \"fileData\": {\n \"mimeType\": \"audio/mpeg\",\n \"fileUri\": \"gs://cloud-samples-data/generative-ai/audio/pixel.mp3\"\n }\n },\n {\n \"text\": \"Please summarize the conversation in one sentence.\"\n }\n ]\n },\n {\n \"role\": \"model\",\n \"parts\": [\n {\n \"text\": \"The podcast episode features two product managers for Pixel devices discussing the new features coming to Pixel phones and watches.\"\n }\n ]\n }\n ]\n }\n\nWhat's next\n-----------\n\n- To learn more about the Gemini audio understanding model, see [Audio understanding (speech only)](/vertex-ai/generative-ai/docs/multimodal/audio-understanding).\n- To start tuning, see [Tune Gemini models by using supervised fine-tuning](/vertex-ai/generative-ai/docs/models/gemini-use-supervised-tuning).\n- To learn how supervised fine-tuning can be used in a solution that builds a generative AI knowledge base, see [Jump Start Solution: Generative AI\n knowledge base](/architecture/ai-ml/generative-ai-knowledge-base)."]]