Modelos compatíveis
A tabela a seguir lista os modelos compatíveis com a compreensão de áudio:
Modelo | Detalhes da modalidade de áudio |
---|---|
Gemini 1.5 Flash Acessar o card de modelo em Flash do Gemini 1.5 |
Duração máxima do áudio por solicitação: aproximadamente 8,4 horas ou até 1 milhão de tokens. É possível compreender a fala para resumo, transcrição e tradução de áudio. |
Gemini 1.5 Pro Acessar o card de modelo do Gemini 1.5 Pro |
Duração máxima do áudio por solicitação: aproximadamente 8,4 horas ou até 1 milhão de tokens. É possível compreender a fala para resumo, transcrição e tradução de áudio. |
Para uma lista de linguagens compatíveis com os modelos do Gemini, consulte as informações do modelo Modelos do Google. Para saber mais sobre como criar comandos multimodais, consulte Criar comandos multimodais. Se você está procurando uma maneira de usar o Gemini diretamente no seu dispositivo móvel e e apps da Web, consulte os SDKs da Vertex AI para Firebase para apps para Android, Swift, da Web e Flutter.
Adicionar áudio a uma solicitação
É possível adicionar arquivos de áudio nas suas solicitações para o Gemini.
Áudio único
Confira a seguir como usar um arquivo de áudio para resumir um podcast.
Python
Para saber como instalar o SDK da Vertex AI para Python, consulte Instalar o SDK da Vertex AI para Python. Saiba mais na documentação de referência da API SDK da Vertex AI para Python.
Respostas com e sem streaming
Escolha se o modelo vai gerar respostas de streaming ou sem streaming. Para respostas de streaming, você recebe cada resposta assim que o token de saída for gerado. Para respostas que não são de streaming, você recebe todas as respostas depois que todos os tokens de saída forem gerados.
Para uma resposta de streaming, use o parâmetro stream
em
generate_content
.
response = model.generate_content(contents=[...], stream = True)
Para uma resposta que não seja de streaming, remova o parâmetro ou defina-o como False
.
Código de amostra
Java
Antes de testar esta amostra, siga as instruções de configuração do Java no guia de início rápido da Vertex AI. Para mais informações, consulte a documentação de referência do SDK da Vertex AI para Java para Gemini.
Para autenticar na Vertex AI, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.
Respostas com e sem streaming
Escolha se o modelo vai gerar respostas de streaming ou sem streaming. Para respostas de streaming, você recebe cada resposta assim que o token de saída for gerado. Para respostas que não são de streaming, você recebe todas as respostas depois que todos os tokens de saída forem gerados.
Para uma resposta de streaming, use o método
generateContentStream
.
public ResponseStream<GenerateContentResponse> generateContentStream(Content content)
Para uma resposta que não seja de streaming, use o método generateContent
.
public GenerateContentResponse generateContent(Content content)
Código de amostra
Node.js
Antes de testar esta amostra, siga as instruções de configuração do Node.js no Guia de início rápido da IA generativa usando o SDK do Node.js. Para mais informações, consulte a documentação de referência do SDK do Node.js para Gemini.
Para autenticar na Vertex AI, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.
Respostas com e sem streaming
Escolha se o modelo vai gerar respostas de streaming ou sem streaming. Para respostas de streaming, você recebe cada resposta assim que o token de saída for gerado. Para respostas que não são de streaming, você recebe todas as respostas depois que todos os tokens de saída forem gerados.
Para uma resposta de streaming, use o método
generateContentStream
.
const streamingResp = await generativeModel.generateContentStream(request);
Para uma resposta que não seja de streaming, use o método generateContent
.
const streamingResp = await generativeModel.generateContent(request);
Código de amostra
Go
Antes de testar esta amostra, siga as instruções de configuração do Go no Guia de início rápido da Vertex AI. Para mais informações, consulte a documentação de referência do SDK da Vertex AI para Go para Gemini.
Para autenticar na Vertex AI, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.
Respostas com e sem streaming
Escolha se o modelo vai gerar respostas de streaming ou sem streaming. Para respostas de streaming, você recebe cada resposta assim que o token de saída for gerado. Para respostas que não são de streaming, você recebe todas as respostas depois que todos os tokens de saída forem gerados.
Para uma resposta de streaming, use o método
GenerateContentStream
.
iter := model.GenerateContentStream(ctx, genai.Text("Tell me a story about a lumberjack and his giant ox. Keep it very short."))
Para uma resposta que não seja de streaming, use o método GenerateContent
.
resp, err := model.GenerateContent(ctx, genai.Text("What is the average size of a swallow?"))
Código de amostra
C#
Antes de testar este exemplo, siga as instruções de configuração do C# na Vertex AI guia de início rápido. Para mais informações, consulte a documentação de referência da Vertex AI C# .
Para autenticar na Vertex AI, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.
Respostas com e sem streaming
Escolha se o modelo vai gerar respostas de streaming ou sem streaming. Para respostas de streaming, você recebe cada resposta assim que o token de saída for gerado. Para respostas que não são de streaming, você recebe todas as respostas depois que todos os tokens de saída forem gerados.
Para uma resposta de streaming, use o método
StreamGenerateContent
.
public virtual PredictionServiceClient.StreamGenerateContentStream StreamGenerateContent(GenerateContentRequest request)
Para uma resposta que não seja de streaming, use o método GenerateContentAsync
.
public virtual Task<GenerateContentResponse> GenerateContentAsync(GenerateContentRequest request)
Para mais informações sobre como o servidor pode transmitir respostas, consulte RPCs de streaming.
Código de amostra
REST
Depois de configurou seu ambiente use REST para testar uma solicitação de texto. O exemplo a seguir envia uma solicitação ao publisher endpoint do modelo.
Antes de usar os dados da solicitação abaixo, faça as substituições a seguir:
LOCATION
: a região para processar a solicitação. Insira uma região compatível. Para a lista completa de regiões compatíveis, consulte Locais disponíveis.Clicar para abrir uma lista parcial das regiões disponíveis
us-central1
us-west4
northamerica-northeast1
us-east4
us-west1
asia-northeast3
asia-southeast1
asia-northeast1
PROJECT_ID
: o ID do projeto.FILE_URI
: o URI do Cloud Storage do arquivo a ser incluído no prompt. O objeto do bucket precisa ser publicamente legível ou residir no mesmo projeto do Google Cloud que está enviando a solicitação. Você também precisa especificar o tipo de mídia (mimeType
) do arquivo.Se você não tiver um arquivo de áudio no Cloud Storage, use o seguinte arquivo disponível publicamente:
gs://cloud-samples-data/generative-ai/audio/pixel.mp3
com um tipo MIME deaudio/mp3
. Para ouvir este áudio: abra o arquivo MP3 de exemplo .MIME_TYPE
: O tipo de mídia do arquivo especificado emdata
oufileUri
. Os valores aceitáveis são os seguintes:Clique para expandir os tipos MIME.
application/pdf
audio/mpeg
audio/mp3
audio/wav
image/png
image/jpeg
text/plain
video/mov
video/mpeg
video/mp4
video/mpg
video/avi
video/wmv
video/mpegps
video/flv
As instruções de texto a serem incluídas no comando. Por exemplo,TEXT
Please provide a summary for the audio. Provide chapter titles, be concise and short, no need to provide chapter summaries. Do not make up any information that is not part of the audio and do not be verbose.
Para enviar a solicitação, escolha uma destas opções:
curl
Salve o corpo da solicitação em um arquivo chamado request.json
.
Execute o comando a seguir no terminal para criar ou substituir
esse arquivo no diretório atual:
cat > request.json << 'EOF' { "contents": { "role": "USER", "parts": [ { "fileData": { "fileUri": "FILE_URI", "mimeType": "MIME_TYPE" } }, { "text": "TEXT" } ] } } EOF
Depois execute o comando a seguir para enviar a solicitação REST:
curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/publishers/google/models/gemini-1.5-flash:generateContent"
PowerShell
Salve o corpo da solicitação em um arquivo chamado request.json
.
Execute o comando a seguir no terminal para criar ou substituir
esse arquivo no diretório atual:
@' { "contents": { "role": "USER", "parts": [ { "fileData": { "fileUri": "FILE_URI", "mimeType": "MIME_TYPE" } }, { "text": "TEXT" } ] } } '@ | Out-File -FilePath request.json -Encoding utf8
Depois execute o comando a seguir para enviar a solicitação REST:
$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }
Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/publishers/google/models/gemini-1.5-flash:generateContent" | Select-Object -Expand Content
Você receberá uma resposta JSON semelhante a seguinte.
Observe o seguinte no URL deste exemplo:- Use o
generateContent
para solicitar que a resposta seja retornada depois de ser totalmente gerada. Para reduzir a percepção de latência ao público humano, transmita a resposta à medida que geradas usando ostreamGenerateContent
. - O ID do modelo multimodal está localizado no final do URL, antes do método
Por exemplo,
gemini-1.5-flash
ougemini-1.0-pro-vision
). Este exemplo pode oferecer suporte a outras modelos de classificação.
Console
Para enviar um prompt multimodal usando o console do Google Cloud, faça o seguinte:
- Na seção "Vertex AI" do console do Google Cloud, acesse a página do Vertex AI Studio.
- Em Design de comandos (turno único), clique em Abrir.
Opcional: configure o modelo e os parâmetros:
- Modelo: selecione um modelo.
- Região: selecione a região que você quer usar.
Temperatura: use o controle deslizante ou a caixa de texto para inserir um valor para a temperatura.
A temperatura é usada para amostragem durante a geração da resposta, que ocorre quandotopP
etopK
são aplicados. A temperatura controla o grau de aleatoriedade na seleção do token. Temperaturas mais baixas são boas para solicitações que exigem uma resposta menos aberta ou criativa, enquanto temperaturas mais altas podem levar a resultados mais diversos ou criativos. Uma temperatura de0
significa que os tokens de maior probabilidade são sempre selecionados. Nesse caso, as respostas para uma determinada solicitação são, na maioria das vezes, deterministas, mas uma pequena variação ainda é possível.Se o modelo retornar uma resposta muito genérica, muito curta ou se o modelo fornecer uma resposta alternativa, tente aumentar a temperatura.
Limite de token de saída: use o controle deslizante ou a caixa de texto para inserir um valor para o limite de saída máximo.
Número máximo de tokens que podem ser gerados na resposta. Um token tem cerca de quatro caracteres. 100 tokens correspondem a cerca de 60 a 80 palavras.Especifique um valor mais baixo para respostas mais curtas e um valor mais alto para respostas potencialmente mais longas.
- Adicionar sequência de paradas: opcional. Insira uma sequência de paradas, que é uma série de caracteres que inclui espaços. Se o modelo encontrar uma sequência de paradas, a geração de resposta será interrompida. A sequência de paradas não é incluída na resposta, e você pode adicionar até cinco sequências de paradas.
- Opcional: para configurar parâmetros avançados, clique em Avançado e faça as configurações da seguinte maneira:
Top-K: use o controle deslizante ou a caixa de texto para inserir um valor para top-K (incompatível com o Gemini 1.5).
O Top-K muda a forma como o modelo seleciona tokens para saída. Um top-K de1
significa que o próximo token selecionado é o mais provável entre todos os tokens no vocabulário do modelo (também chamado de decodificação gananciosa), enquanto um top-K de3
significa que o próximo token está selecionado entre os três tokens mais prováveis usando a temperatura.Para cada etapa da seleção de tokens, são amostrados os tokens top-K com as maiores probabilidades. Em seguida, os tokens são filtrados com base no valor de top-P com o token final selecionado por meio da amostragem de temperatura.
Especifique um valor mais baixo para respostas menos aleatórias e um valor mais alto para respostas mais aleatórias.
- Top-P: use o controle deslizante ou a caixa de texto para inserir um valor para essa parte.
Os tokens são selecionados do mais provável para o menos até que a soma das probabilidades seja igual ao valor do top-P. Para ter menos resultados de variáveis,
defina top-P como
0
. - Ativar embasamento: o embasamento não é compatível com recursos multimodais. solicitações.
- Para fazer upload de mídia, como arquivos MP3 e WAV, faça o seguinte:
- Clique em Inserir mídia e selecione uma origem.
Se você escolher o Google Drive como seu origem, escolha uma conta e dê consentimento o Vertex AI Studio acesse sua conta na primeira vez que selecione essa opção. É possível fazer o upload de vários arquivos de mídia com até 10 MB. Um arquivo não pode exceder 7 MB.
- Clique no arquivo que você quer adicionar.
- Clique em Selecionar.
A miniatura do arquivo é mostrada no painel Comando. O número total de tokens também é exibido. Se os dados de solicitação excederem o limite de tokens, eles serão truncados e não serão incluídos no processamento dos dados.
- Opcional: para exibir o número de tokens calculados nos seus arquivos de áudio e a soma de todos os tokens, clique em Ver tokens.
Pode levar até 15 segundos para calcular a contagem de tokens para arquivos de mídia. As visualizações ID do token para texto e ID do token não mostram resultados importantes porque não há compatibilidade com tokens de mídia.
Para fechar o painel da ferramenta tokenizadora, clique em X ou clique fora do painel.
- Digite o comando de texto no painel Prompt.
- Opcional: para exibir o número de tokens calculados nos arquivos de áudio, o número de tokens de texto e a soma de todos os tokens, clique em Ver tokens. É possível conferir os tokens ou IDs de token do comando de texto.
- Para ver os tokens no comando de texto destacados com cores diferentes marcando o limite de cada ID de token, clique em ID do token para texto. Tokens de mídia não são aceitos.
- Para acessar os IDs de token, clique em ID do token.
Para fechar o painel da ferramenta tokenizadora, clique em X ou clique fora do painel.
- Clique em Enviar.
- Opcional: para salvar a solicitação em Minhas solicitações, clique em Salvar.
- Opcional: para receber o código Python ou um comando curl para seu prompt, clique em Ver código.
Clique para abrir as configurações avançadas
Transcrição de áudio
A seguir, mostramos como usar um arquivo de áudio para transcrever uma entrevista.
Python
Para saber como instalar o SDK da Vertex AI para Python, consulte Instalar o SDK da Vertex AI para Python. Saiba mais na documentação de referência da API SDK da Vertex AI para Python.
Respostas com e sem streaming
Escolha se o modelo vai gerar respostas de streaming ou sem streaming. Para respostas de streaming, você recebe cada resposta assim que o token de saída for gerado. Para respostas que não são de streaming, você recebe todas as respostas depois que todos os tokens de saída forem gerados.
Para uma resposta de streaming, use o parâmetro stream
em
generate_content
.
response = model.generate_content(contents=[...], stream = True)
Para uma resposta que não seja de streaming, remova o parâmetro ou defina-o como False
.
Código de amostra
Java
Antes de testar esta amostra, siga as instruções de configuração do Java no guia de início rápido da Vertex AI. Para mais informações, consulte a documentação de referência do SDK da Vertex AI para Java para Gemini.
Para autenticar na Vertex AI, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.
Respostas com e sem streaming
Escolha se o modelo vai gerar respostas de streaming ou sem streaming. Para respostas de streaming, você recebe cada resposta assim que o token de saída for gerado. Para respostas que não são de streaming, você recebe todas as respostas depois que todos os tokens de saída forem gerados.
Para uma resposta de streaming, use o método
generateContentStream
.
public ResponseStream<GenerateContentResponse> generateContentStream(Content content)
Para uma resposta que não seja de streaming, use o método generateContent
.
public GenerateContentResponse generateContent(Content content)
Código de amostra
Node.js
Antes de testar esta amostra, siga as instruções de configuração do Node.js no Guia de início rápido da IA generativa usando o SDK do Node.js. Para mais informações, consulte a documentação de referência do SDK do Node.js para Gemini.
Para autenticar na Vertex AI, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.
Respostas com e sem streaming
Escolha se o modelo vai gerar respostas de streaming ou sem streaming. Para respostas de streaming, você recebe cada resposta assim que o token de saída for gerado. Para respostas que não são de streaming, você recebe todas as respostas depois que todos os tokens de saída forem gerados.
Para uma resposta de streaming, use o método
generateContentStream
.
const streamingResp = await generativeModel.generateContentStream(request);
Para uma resposta que não seja de streaming, use o método generateContent
.
const streamingResp = await generativeModel.generateContent(request);
Código de amostra
Go
Antes de testar esta amostra, siga as instruções de configuração do Go no Guia de início rápido da Vertex AI. Para mais informações, consulte a documentação de referência do SDK da Vertex AI para Go para Gemini.
Para autenticar na Vertex AI, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.
Respostas com e sem streaming
Escolha se o modelo vai gerar respostas de streaming ou sem streaming. Para respostas de streaming, você recebe cada resposta assim que o token de saída for gerado. Para respostas que não são de streaming, você recebe todas as respostas depois que todos os tokens de saída forem gerados.
Para uma resposta de streaming, use o método
GenerateContentStream
.
iter := model.GenerateContentStream(ctx, genai.Text("Tell me a story about a lumberjack and his giant ox. Keep it very short."))
Para uma resposta que não seja de streaming, use o método GenerateContent
.
resp, err := model.GenerateContent(ctx, genai.Text("What is the average size of a swallow?"))
Código de amostra
C#
Antes de testar este exemplo, siga as instruções de configuração do C# na Vertex AI guia de início rápido. Para mais informações, consulte a documentação de referência da Vertex AI C# .
Para autenticar na Vertex AI, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.
Respostas com e sem streaming
Escolha se o modelo vai gerar respostas de streaming ou sem streaming. Para respostas de streaming, você recebe cada resposta assim que o token de saída for gerado. Para respostas que não são de streaming, você recebe todas as respostas depois que todos os tokens de saída forem gerados.
Para uma resposta de streaming, use o método
StreamGenerateContent
.
public virtual PredictionServiceClient.StreamGenerateContentStream StreamGenerateContent(GenerateContentRequest request)
Para uma resposta que não seja de streaming, use o método GenerateContentAsync
.
public virtual Task<GenerateContentResponse> GenerateContentAsync(GenerateContentRequest request)
Para mais informações sobre como o servidor pode transmitir respostas, consulte RPCs de streaming.
Código de amostra
REST
Depois de configurou seu ambiente use REST para testar uma solicitação de texto. O exemplo a seguir envia uma solicitação ao publisher endpoint do modelo.
Antes de usar os dados da solicitação abaixo, faça as substituições a seguir:
LOCATION
: a região para processar a solicitação. Insira uma região compatível. Para a lista completa de regiões compatíveis, consulte Locais disponíveis.Clicar para abrir uma lista parcial das regiões disponíveis
us-central1
us-west4
northamerica-northeast1
us-east4
us-west1
asia-northeast3
asia-southeast1
asia-northeast1
PROJECT_ID
: o ID do projeto.FILE_URI
: o URI do Cloud Storage do arquivo a ser incluído no prompt. O objeto do bucket precisa ser publicamente legível ou residir no mesmo projeto do Google Cloud que está enviando a solicitação. Você também precisa especificar o tipo de mídia (mimeType
) do arquivo.Se você não tiver um arquivo de áudio no Cloud Storage, use o seguinte arquivo disponível publicamente:
gs://cloud-samples-data/generative-ai/audio/pixel.mp3
com um tipo MIME deaudio/mp3
. Para ouvir este áudio: abra o arquivo MP3 de exemplo .MIME_TYPE
: O tipo de mídia do arquivo especificado emdata
oufileUri
. Os valores aceitáveis são os seguintes:Clique para expandir os tipos MIME.
application/pdf
audio/mpeg
audio/mp3
audio/wav
image/png
image/jpeg
text/plain
video/mov
video/mpeg
video/mp4
video/mpg
video/avi
video/wmv
video/mpegps
video/flv
As instruções de texto a serem incluídas no comando. Por exemplo,TEXT
Can you transcribe this interview, in the format of timecode, speaker, caption. Use speaker A, speaker B, etc. to identify speakers.
Para enviar a solicitação, escolha uma destas opções:
curl
Salve o corpo da solicitação em um arquivo chamado request.json
.
Execute o comando a seguir no terminal para criar ou substituir
esse arquivo no diretório atual:
cat > request.json << 'EOF' { "contents": { "role": "USER", "parts": [ { "fileData": { "fileUri": "FILE_URI", "mimeType": "MIME_TYPE" } }, { "text": "TEXT" } ] } } EOF
Depois execute o comando a seguir para enviar a solicitação REST:
curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/publishers/google/models/gemini-1.5-flash:generateContent"
PowerShell
Salve o corpo da solicitação em um arquivo chamado request.json
.
Execute o comando a seguir no terminal para criar ou substituir
esse arquivo no diretório atual:
@' { "contents": { "role": "USER", "parts": [ { "fileData": { "fileUri": "FILE_URI", "mimeType": "MIME_TYPE" } }, { "text": "TEXT" } ] } } '@ | Out-File -FilePath request.json -Encoding utf8
Depois execute o comando a seguir para enviar a solicitação REST:
$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }
Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/publishers/google/models/gemini-1.5-flash:generateContent" | Select-Object -Expand Content
Você receberá uma resposta JSON semelhante a seguinte.
Observe o seguinte no URL deste exemplo:- Use o
generateContent
para solicitar que a resposta seja retornada depois de ser totalmente gerada. Para reduzir a percepção de latência ao público humano, transmita a resposta à medida que geradas usando ostreamGenerateContent
. - O ID do modelo multimodal está localizado no final do URL, antes do método
Por exemplo,
gemini-1.5-flash
ougemini-1.0-pro-vision
). Este exemplo pode oferecer suporte a outras modelos de classificação.
Console
Para enviar um prompt multimodal usando o console do Google Cloud, faça o seguinte:
- Na seção "Vertex AI" do console do Google Cloud, acesse a página do Vertex AI Studio.
- Em Design de comandos (turno único), clique em Abrir.
Opcional: configure o modelo e os parâmetros:
- Modelo: selecione um modelo.
- Região: selecione a região que você quer usar.
Temperatura: use o controle deslizante ou a caixa de texto para inserir um valor para a temperatura.
A temperatura é usada para amostragem durante a geração da resposta, que ocorre quandotopP
etopK
são aplicados. A temperatura controla o grau de aleatoriedade na seleção do token. Temperaturas mais baixas são boas para solicitações que exigem uma resposta menos aberta ou criativa, enquanto temperaturas mais altas podem levar a resultados mais diversos ou criativos. Uma temperatura de0
significa que os tokens de maior probabilidade são sempre selecionados. Nesse caso, as respostas para uma determinada solicitação são, na maioria das vezes, deterministas, mas uma pequena variação ainda é possível.Se o modelo retornar uma resposta muito genérica, muito curta ou se o modelo fornecer uma resposta alternativa, tente aumentar a temperatura.
Limite de token de saída: use o controle deslizante ou a caixa de texto para inserir um valor para o limite de saída máximo.
Número máximo de tokens que podem ser gerados na resposta. Um token tem cerca de quatro caracteres. 100 tokens correspondem a cerca de 60 a 80 palavras.Especifique um valor mais baixo para respostas mais curtas e um valor mais alto para respostas potencialmente mais longas.
- Adicionar sequência de paradas: opcional. Insira uma sequência de paradas, que é uma série de caracteres que inclui espaços. Se o modelo encontrar uma sequência de paradas, a geração de resposta será interrompida. A sequência de paradas não é incluída na resposta, e você pode adicionar até cinco sequências de paradas.
- Opcional: para configurar parâmetros avançados, clique em Avançado e faça as configurações da seguinte maneira:
Top-K: use o controle deslizante ou a caixa de texto para inserir um valor para top-K (incompatível com o Gemini 1.5).
O Top-K muda a forma como o modelo seleciona tokens para saída. Um top-K de1
significa que o próximo token selecionado é o mais provável entre todos os tokens no vocabulário do modelo (também chamado de decodificação gananciosa), enquanto um top-K de3
significa que o próximo token está selecionado entre os três tokens mais prováveis usando a temperatura.Para cada etapa da seleção de tokens, são amostrados os tokens top-K com as maiores probabilidades. Em seguida, os tokens são filtrados com base no valor de top-P com o token final selecionado por meio da amostragem de temperatura.
Especifique um valor mais baixo para respostas menos aleatórias e um valor mais alto para respostas mais aleatórias.
- Top-P: use o controle deslizante ou a caixa de texto para inserir um valor para essa parte.
Os tokens são selecionados do mais provável para o menos até que a soma das probabilidades seja igual ao valor do top-P. Para ter menos resultados de variáveis,
defina top-P como
0
. - Ativar embasamento: o embasamento não é compatível com recursos multimodais. solicitações.
- Para fazer upload de mídia, como arquivos MP3 e WAV, faça o seguinte:
- Clique em Inserir mídia e selecione uma origem.
Se você escolher o Google Drive como seu origem, escolha uma conta e dê consentimento o Vertex AI Studio acesse sua conta na primeira vez que selecione essa opção. É possível fazer o upload de vários arquivos de mídia com até 10 MB. Um arquivo não pode exceder 7 MB.
- Clique no arquivo que você quer adicionar.
- Clique em Selecionar.
A miniatura do arquivo é mostrada no painel Comando. O número total de tokens também é exibido. Se os dados de solicitação excederem o limite de tokens, eles serão truncados e não serão incluídos no processamento dos dados.
- Opcional: para exibir o número de tokens calculados nos seus arquivos de áudio e a soma de todos os tokens, clique em Ver tokens.
Pode levar até 15 segundos para calcular a contagem de tokens para arquivos de mídia. As visualizações ID do token para texto e ID do token não mostram resultados importantes porque não há compatibilidade com tokens de mídia.
Para fechar o painel da ferramenta tokenizadora, clique em X ou clique fora do painel.
- Digite o comando de texto no painel Prompt.
- Opcional: para exibir o número de tokens calculados nos arquivos de áudio, o número de tokens de texto e a soma de todos os tokens, clique em Ver tokens. É possível conferir os tokens ou IDs de token do comando de texto.
- Para ver os tokens no comando de texto destacados com cores diferentes marcando o limite de cada ID de token, clique em ID do token para texto. Tokens de mídia não são aceitos.
- Para acessar os IDs de token, clique em ID do token.
Para fechar o painel da ferramenta tokenizadora, clique em X ou clique fora do painel.
- Clique em Enviar.
- Opcional: para salvar a solicitação em Minhas solicitações, clique em Salvar.
- Opcional: para receber o código Python ou um comando curl para seu prompt, clique em Ver código.
Clique para abrir as configurações avançadas
Definir parâmetros do modelo
Os seguintes parâmetros de modelo podem ser definidos em modelos multimodais:
Top-P
O top-p muda a forma como o modelo seleciona tokens para saída. Os tokens são selecionados
do mais provável (veja o top-K) para o menos provável até que a soma das probabilidades
seja igual ao valor do top-P. Por exemplo, se os tokens A, B e C tiverem uma probabilidade de 0,3, 0,2 e 0,1 e o valor de top-P for 0.5
, o modelo selecionará A ou B como token seguinte usando temperatura e exclui C como
candidato.
Especifique um valor mais baixo para respostas menos aleatórias e um valor mais alto para respostas mais aleatórias.
Temperatura
A temperatura é usada para amostragem durante a geração da resposta, que ocorre quando topP
e topK
são aplicados. A temperatura controla o grau de aleatoriedade na seleção do token.
Temperaturas mais baixas são boas para solicitações que exigem uma resposta menos aberta ou criativa, enquanto temperaturas mais altas podem levar a resultados mais diversos ou criativos. Uma temperatura de 0
significa que os tokens de maior probabilidade são sempre selecionados. Nesse caso, as respostas para uma determinada solicitação são, na maioria das vezes, deterministas, mas uma pequena variação ainda é possível.
Se o modelo retornar uma resposta muito genérica, muito curta ou se o modelo fornecer uma resposta alternativa, tente aumentar a temperatura.
Valores de parâmetro válidos
Parâmetro | Gemini 1.5 Pro | Gemini 1.5 Flash |
---|---|---|
Top-P | 0 - 1.0 (padrão 0.95) | 0 - 1.0 (padrão 0.95) |
Temperatura | 0 - 2.0 (padrão 1.0) | 0 - 2.0 (padrão 1.0) |
Requisitos de áudio
Os modelos multimodais do Gemini são compatíveis com os seguintes tipos MIME de áudio:
Tipo MIME de áudio | Gemini 1.5 Flash | Gemini 1.5 Pro |
---|---|---|
AAC - audio/aac |
||
FLAC - audio/flac |
||
MP3 - audio/mp3 |
||
MPA - audio/m4a |
||
MPEG - audio/mpeg |
||
MPGA - audio/mpga |
||
MP4 - audio/mp4 |
||
OPUS - audio/opus |
||
PCM - audio/pcm |
||
WAV - audio/wav |
||
WEBM - audio/webm |
Você pode incluir no máximo
Limitações
Embora os modelos multimodais do Gemini sejam eficientes em muitos casos de uso multimodais, é importante entender as limitações dos modelos:
- Reconhecimento de som sem fala: os modelos compatíveis com áudio podem cometer erros ao reconhecer sons que não são fala.
- Carimbos de data/hora somente de áudio: os modelos compatíveis com áudio não podem gerar carimbos de data/hora com precisão para solicitações com arquivos de áudio. Isso inclui carimbos de data/hora de segmentação e localização temporal. Os carimbos de data/hora podem ser gerados com precisão para entrada que inclua um vídeo com áudio.
- Pontuação da transcrição: (Se estiver usando o Gemini 1.5 Flash) Os modelos podem retornar transcrições que não incluem pontuação.
A seguir
- Comece a criar com os modelos multimodais do Gemini. Novos clientes ganham US $300 em créditos gratuitos do Google Cloud para descobrir o que eles podem fazer com o Gemini.
- Saiba como enviar solicitações de comandos de chat.
- Saiba mais sobre as práticas recomendadas de IA responsável e os filtros de segurança da Vertex AI.