Bei modellbasierten Messwerten bewertet der Gen AI Evaluation Service Ihre Modelle mit einem Fundierungsmodell wie Gemini, das als Judge-Modell konfiguriert wurde. Auf dieser Seite wird beschrieben, wie Sie die Qualität dieses Judge-Modells verbessern und es mithilfe von Prompt-Engineering-Techniken an Ihre Anforderungen anpassen können.
Informationen zum grundlegenden Bewertungsablauf finden Sie in der Kurzanleitung für den Gen AI Evaluation Service. Die Reihe zur erweiterten Anpassung von Judge-Modellen umfasst die folgenden Seiten:
- Judge-Modell bewerten
- Prompts für die Anpassung des Judge-Modells (aktuelle Seite)
- Judge-Modell konfigurieren
Übersicht
Die Bewertung von Large Language Models (LLMs) durch menschliche Prüfer kann teuer und zeitaufwendig sein. Die Verwendung eines Judge-Modells ist eine skalierbarere Methode zur Bewertung von LLMs.
Der Gen AI Evaluation Service verwendet standardmäßig Gemini 2.0 Flash als Judge-Modell. Mit anpassbaren Prompts können Sie Ihr Modell für verschiedene Anwendungsfälle bewerten. Viele grundlegende Anwendungsfälle werden in Vorlagen für modellbasierte Messwerte abgedeckt. Sie können das Bewertungsmodell jedoch mit dem folgenden Verfahren über die grundlegenden Anwendungsfälle hinaus anpassen:
Erstellen Sie ein Dataset mit Prompts, die für Ihren Anwendungsfall repräsentativ sind. Die empfohlene Dataset-Größe liegt zwischen 100 und 1.000 Prompts.
Verwenden Sie die Prompts, um das Judge-Modell mit Prompt-Engineering-Techniken zu ändern.
Prompt Engineering-Techniken
In diesem Abschnitt werden Techniken für das Prompt-Engineering aufgeführt, mit denen Sie das Judge-Modell anpassen können. In den Beispielen wird Zero-Shot-Prompting verwendet. Sie können aber auch Few-Shot-Beispiele im Prompt verwenden, um die Modellqualität zu verbessern.
Beginnen Sie mit Prompts, die für das gesamte Bewertungs-Dataset gelten. Die Prompts sollten allgemeine Bewertungskriterien und Rubriken für Bewertungen enthalten und das Bewertungsmodell sollte ein endgültiges Urteil abgeben. Beispiele für Bewertungskriterien und Rubriken für verschiedene Anwendungsfälle finden Sie unter Vorlagen für Messwert-Prompts.
Chain-of-Thought-Prompts verwenden
Weisen Sie das Judge-Modell an, ein Kandidatenmodell mit einer Reihe von logisch zusammenhängenden Aktionen oder Schritten zu bewerten.
Sie können beispielsweise die folgende Schritt-für-Schritt-Anleitung verwenden:
"Please first list down the instructions in the user query."
"Please highlight such specific keywords."
"After listing down instructions, you should rank the instructions in the order of importance."
"After that, INDEPENDENTLY check if response A and response B for meeting each of the instructions."
"Writing quality/style should NOT be used to judge the response quality unless it was requested by the user."
"When evaluating the final response quality, please value Instruction Following a more important rubrics than Truthfulness."
Im folgenden Beispiel-Prompt wird das Judge-Modell aufgefordert, Textaufgaben mithilfe von Chain-of-Thought-Prompting zu bewerten:
# Rubrics
Your mission is to judge responses from two AI models, Model A and Model B, and decide which is better. You will be given the previous conversations between the user and the model, a prompt, and responses from both models.
Please use the following rubric criteria to judge the responses:
<START OF RUBRICS>
Your task is to first analyze each response based on the two rubric criteria: instruction_following, and truthfulness (factual correctness). Start your analysis with "Analysis".
(1) Instruction Listing
Please first list down the instructions in the user query. In general, an instruction is VERY important if it is specific asked in the prompt and deviate from the norm. Please highlight such specific keywords.
You should also derive the task type from the prompt and include the task specific implied instructions.
Sometimes, no instruction is available in the prompt. It is your job to infer if the instruction is to auto-complete the prompt or asking LLM for followups.
After listing down instructions, you should rank the instructions in the order of importance.
After that, INDEPENDENTLY check if response A and response B for meeting each of the instructions. You should itemize for each instruction, if response meet, partially meet or does not meet the requirement using reasoning. You should start reasoning first before reaching a conclusion whether response satisfies the requirement. Citing examples while making reasoning is preferred.
(2) Truthfulness
Compare response A and response B for factual correctness. The one with less hallucinated issues is better.
If response is in sentences and not too long, you should check every sentence separately.
For longer responses, to check factual correctness, focus specifically on places where response A and B differ. Find the correct information in the text to decide if one is more truthful to the other or they are about the same.
If you cannot determine validity of claims made in the response, or response is a punt ("I am not able to answer that type of question"), the response has no truthful issues.
Truthfulness check is not applicable in the majority of creative writing cases ("write me a story about a unicorn on a parade")
Writing quality/style should NOT be used to judge the response quality unless it was requested by the user.
In the end, express your final verdict in one of the following choices:
1. Response A is better: [[A>B]]
2. Tie, relatively the same: [[A=B]]
3. Response B is better: [[B>A]]
Example of final verdict: "My final verdict is tie, relatively the same: [[A=B]]".
When evaluating the final response quality, please value Instruction Following a more important rubrics than Truthfulness.
When for both response, instruction and truthfulness are fully meet, it is a tie.
<END OF RUBRICS>
Begründung des Modells mit Bewertungsrichtlinien steuern
Verwenden Sie Richtlinien für die Bewertung, damit das Bewertungsmodell die Begründung des Modells bewerten kann. Die Richtlinien für die Bewertung unterscheiden sich von den Bewertungskriterien.
Im folgenden Prompt werden beispielsweise Bewertungskriterien verwendet, mit denen ein Richtermodell angewiesen wird, die Aufgabe „Befolgung von Anweisungen“ anhand der Bewertungsrubriken „schwerwiegende Probleme“, „geringfügige Probleme“ und „keine Probleme“ zu bewerten:
Your task is to first analyze each response based on the three rubric criteria: verbosity, instruction_following, truthfulness (code correctness) and (coding) executability. Please note that the model responses should follow "response system instruction" (if provided). Format your judgment in the following way:
Response A - verbosity:too short|too verbose|just right
Response A - instruction_following:major issues|minor issues|no issues
Response A - truthfulness:major issues|minor issues|no issues
Response A - executability:no|no code present|yes-fully|yes-partially
Then do the same for response B.
After the rubric judgements, you should also give a brief rationale to summarize your evaluation considering each individual criteria as well as the overall quality in a new paragraph starting with "Reason: ".
In the last line, express your final judgment in the format of: "Which response is better: [[verdict]]" where "verdict" is one of {Response A is much better, Response A is better, Response A is slightly better, About the same, Response B is slightly better, Response B is better, Response B is much better}. Do not use markdown format or output anything else.
Im folgenden Prompt werden Bewertungsrichtlinien verwendet, um dem Bewertungsmodell bei der Bewertung der Aufgabe „Befolgung von Anweisungen“ zu helfen:
You are a judge for coding related tasks for LLMs. You will be provided with a coding prompt, and two responses (Response A and Response B) attempting to answer the prompt. Your task is to evaluate each response based on the following criteria:
Correctness: Does the code produce the correct output and solve the problem as stated?
Executability: Does the code run without errors?
Instruction Following: Does the code adhere to the given instructions and constraints?
Please think about the three criteria, and provide a side-by-side comparison rating to to indicate which one is better.
Bewertungsmodell mit Referenzantworten abstimmen
Sie können das Bewertungsmodell mit Referenzantworten für einige oder alle Prompts abstimmen.
Der folgende Prompt gibt dem Judge-Modell vor, wie die Referenzantworten verwendet werden sollen:
"Note that you can compare the responses with the reference answer to make your judgment, but the reference answer may not be the only correct answer to the query."
Im folgenden Beispiel werden auch Begründungen, Chain-of-Thought-Prompts und Bewertungsrichtlinien verwendet, um den Bewertungsprozess für die Aufgabe „Befolgung von Anweisungen“ zu steuern:
# Rubrics
Your mission is to judge responses from two AI models, Model A and Model B, and decide which is better. You will be given a user query, source summaries, and responses from both models. A reference answer
may also be provided - note that you can compare the responses with the reference answer to make your judgment, but the reference answer may not be the only correct answer to the query.
Please use the following rubric criteria to judge the responses:
<START OF RUBRICS>
Your task is to first analyze each response based on the three rubric criteria: grounding, completeness, and instruction_following. Start your analysis with "Analysis".
(1) Grounding
Please first read through all the given sources in the source summaries carefully and make sure you understand the key points in each one.
After that, INDEPENDENTLY check if response A and response B use ONLY the given sources in the source summaries to answer the user query. It is VERY important to check that all
statements in the response MUST be traceable back to the source summaries and ACCURATELY cited.
(2) Completeness
Please first list down the aspects in the user query. After that, INDEPENDENTLY check if response A and response B for covering each of the aspects by using ALL RELEVANT information from the sources.
(3) Instruction Following
Please read through the following instruction following rubrics carefully. After that, INDEPENDENTLY check if response A and response B for following each of the instruction following rubrics successfully.
* Does the response provide a final answer based on summaries of 3 potential answers to a user query?
* Does the response only use the technical sources provided that are relevant to the query?
* Does the response use only information from sources provided?
* Does the response select all the sources that provide helpful details to answer the question in the Technical Document?
* If the sources have significant overlapping or duplicate details, does the response select sources which are most detailed and comprehensive?
* For each selected source, does the response prepend source citations?
* Does the response use the format: "Source X" where x represents the order in which the technical source appeared in the input?
* Does the response use original source(s) directly in its response, presenting each source in its entirety, word-for-word, without omitting and altering any details?
* Does the response create a coherent technical final answer from selected Sources without inter-mixing text from any of the Sources?
Writing quality/style can be considered, but should NOT be used as critical rubric criteria to judge the response quality.
In the end, express your final verdict in one of the following choices:
1. Response A is better: [[A>B]]
2. Tie, relatively the same: [[A=B]]
3. Response B is better: [[B>A]]
Example of final verdict: "My final verdict is tie, relatively the same: [[A=B]]".
When for both response, grounding, completeness, and instruction following are fully meet, it is a tie.
<END OF RUBRICS>
Nächste Schritte
- Führen Sie die Bewertung mit dem geänderten Judge-Modell aus.
- Judge-Modell konfigurieren