Appeler Gemini avec l'API Chat Completions
L'exemple suivant montre comment envoyer des requêtes qui ne sont pas des requêtes de flux :
REST
curl -X POST \ -H "Authorization: Bearer $(gcloud auth print-access-token)" \ -H "Content-Type: application/json" \ https://${LOCATION}-aiplatform.googleapis.com/v1beta1/projects/${PROJECT_ID}/locations/${LOCATION}/endpoints/openapi/chat/completions \ -d '{ "model": "google/${MODEL_ID}", "messages": [{ "role": "user", "content": "Write a story about a magic backpack." }] }'
Python
Avant d'essayer cet exemple, suivez les instructions de configuration pour Python décrites dans le guide de démarrage rapide de Vertex AI sur l'utilisation des bibliothèques clientes. Pour en savoir plus, consultez la documentation de référence de l'API Vertex AI pour Python.
Pour vous authentifier auprès de Vertex AI, configurez le service Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.
L'exemple suivant vous montre comment envoyer des requêtes de flux à un modèle Gemini à l'aide de l'API Chat Completions :
REST
curl -X POST \ -H "Authorization: Bearer $(gcloud auth print-access-token)" \ -H "Content-Type: application/json" \ https://${LOCATION}-aiplatform.googleapis.com/v1beta1/projects/${PROJECT_ID}/locations/${LOCATION}/endpoints/openapi/chat/completions \ -d '{ "model": "google/${MODEL_ID}", "stream": true, "messages": [{ "role": "user", "content": "Write a story about a magic backpack." }] }'
Python
Avant d'essayer cet exemple, suivez les instructions de configuration pour Python décrites dans le guide de démarrage rapide de Vertex AI sur l'utilisation des bibliothèques clientes. Pour en savoir plus, consultez la documentation de référence de l'API Vertex AI pour Python.
Pour vous authentifier auprès de Vertex AI, configurez le service Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.
Appeler un modèle déployé automatiquement avec l'API Chat Completions
L'exemple suivant montre comment envoyer des requêtes qui ne sont pas des requêtes de flux :
REST
curl -X POST \ -H "Authorization: Bearer $(gcloud auth print-access-token)" \ -H "Content-Type: application/json" \ https://aiplatform.googleapis.com/v1beta1/projects/${PROJECT_ID}/locations/global/endpoints/${ENDPOINT}/chat/completions \ -d '{ "messages": [{ "role": "user", "content": "Write a story about a magic backpack." }] }'
Python
Avant d'essayer cet exemple, suivez les instructions de configuration pour Python décrites dans le guide de démarrage rapide de Vertex AI sur l'utilisation des bibliothèques clientes. Pour en savoir plus, consultez la documentation de référence de l'API Vertex AI pour Python.
Pour vous authentifier auprès de Vertex AI, configurez le service Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.
L'exemple suivant montre comment envoyer des requêtes de flux à un modèle déployé automatiquement à l'aide de l'API Chat Completions :
REST
curl -X POST \ -H "Authorization: Bearer $(gcloud auth print-access-token)" \ -H "Content-Type: application/json" \ https://aiplatform.googleapis.com/v1beta1/projects/${PROJECT_ID}/locations/global/endpoints/${ENDPOINT}/chat/completions \ -d '{ "stream": true, "messages": [{ "role": "user", "content": "Write a story about a magic backpack." }] }'
Python
Avant d'essayer cet exemple, suivez les instructions de configuration pour Python décrites dans le guide de démarrage rapide de Vertex AI sur l'utilisation des bibliothèques clientes. Pour en savoir plus, consultez la documentation de référence de l'API Vertex AI pour Python.
Pour vous authentifier auprès de Vertex AI, configurez le service Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.
Exemples extra_body
Vous pouvez utiliser le SDK ou l'API REST pour transmettre extra_body
.
Ajouter thought_tag_marker
{
...,
"extra_body": {
"google": {
...,
"thought_tag_marker": "..."
}
}
}
Ajouter extra_body
à l'aide du SDK
client.chat.completions.create(
...,
extra_body = {
'extra_body': { 'google': { ... } }
},
)
Exemples extra_content
Vous pouvez renseigner ce champ directement à l'aide de l'API REST.
extra_content
avec une chaîne content
{
"messages": [
{ "role": "...", "content": "...", "extra_content": { "google": { ... } } }
]
}
extra_content
par message
{
"messages": [
{
"role": "...",
"content": [
{ "type": "...", ..., "extra_content": { "google": { ... } } }
]
}
}
Appel extra_content
par outil
{
"messages": [
{
"role": "...",
"tool_calls": [
{
...,
"extra_content": { "google": { ... } }
}
]
}
]
}
Exemples de requêtes curl
Vous pouvez utiliser ces requêtes curl
directement, sans passer par le SDK.
Requêtes multimodales
curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json" \
https://aiplatform.googleapis.com/v1/projects/${PROJECT_ID}/locations/global/endpoints/openapi/chat/completions \
-d '{ \
"model": "google/gemini-2.0-flash-001", \
"messages": [ \
{ "role": "user", \
"content": [ \
{ "type": "text", "text": "Summarize the main points of this audio file: " }, \
{ "type": "input_audio", "input_audio": { \
"format": "audio/mp3", \
"data": "gs://cloud-samples-data/generative-ai/audio/pixel.mp3" } }] }] }'
Sortie structurée
Vous pouvez utiliser le paramètre response_format
pour obtenir une sortie structurée.
Exemple d'utilisation du SDK
from pydantic import BaseModel
from openai import OpenAI
client = OpenAI()
class CalendarEvent(BaseModel):
name: str
date: str
participants: list[str]
completion = client.beta.chat.completions.parse(
model="google/gemini-2.5-flash-preview-04-17",
messages=[
{"role": "system", "content": "Extract the event information."},
{"role": "user", "content": "Alice and Bob are going to a science fair on Friday."},
],
response_format=CalendarEvent,
)
print(completion.choices[0].message.parsed)
Étapes suivantes
- Consultez des exemples d'appel de l'API Inference avec la syntaxe compatible avec OpenAI.
- Consultez des exemples d'appel de l'API Function Calling avec la syntaxe compatible avec OpenAI.
- Apprenez-en plus sur l'API Gemini.
- Apprenez-en plus sur la migration d'Azure OpenAI vers l'API Gemini.