A partir de 29 de abril de 2025, os modelos Gemini 1.5 Pro e Gemini 1.5 Flash não estarão disponíveis em projetos que não os usaram antes, incluindo novos projetos. Para mais detalhes, consulte Versões e ciclo de vida do modelo.
Mantenha tudo organizado com as coleções
Salve e categorize o conteúdo com base nas suas preferências.
Na IA generativa, embasamento é a capacidade de conectar a saída do modelo a fontes de informações verificáveis. Se você fornecer aos modelos acesso a fontes de dados específicas, o embasamento da saída deles a esses dados reduz as chances de inventar conteúdo. Isso é especialmente importante em situações em que a acurácia e a confiabilidade são significativas.
O embasamento oferece os seguintes benefícios:
Reduz alucinações de modelos, que são casos em que o modelo gera
conteúdo que não é factual.
Ancora respostas do modelo às suas fontes de dados.
Oferece capacidade de auditoria ao fornecer suporte de embasamento, que são links para fontes.
É possível embasar a saída de modelos compatíveis na Vertex AI das seguintes maneiras:
[[["Fácil de entender","easyToUnderstand","thumb-up"],["Meu problema foi resolvido","solvedMyProblem","thumb-up"],["Outro","otherUp","thumb-up"]],[["Difícil de entender","hardToUnderstand","thumb-down"],["Informações incorretas ou exemplo de código","incorrectInformationOrSampleCode","thumb-down"],["Não contém as informações/amostras de que eu preciso","missingTheInformationSamplesINeed","thumb-down"],["Problema na tradução","translationIssue","thumb-down"],["Outro","otherDown","thumb-down"]],["Última atualização 2025-08-25 UTC."],[],[],null,["# Grounding overview\n\n| To see an example of grounding,\n| run the \"Intro to grounding\" notebook in one of the following\n| environments:\n|\n| [Open in Colab](https://colab.research.google.com/github/GoogleCloudPlatform/generative-ai/blob/main/gemini/grounding/intro-grounding-gemini.ipynb)\n|\n|\n| \\|\n|\n| [Open in Colab Enterprise](https://console.cloud.google.com/vertex-ai/colab/import/https%3A%2F%2Fraw.githubusercontent.com%2FGoogleCloudPlatform%2Fgenerative-ai%2Fmain%2Fgemini%2Fgrounding%2Fintro-grounding-gemini.ipynb)\n|\n|\n| \\|\n|\n| [Open\n| in Vertex AI Workbench](https://console.cloud.google.com/vertex-ai/workbench/deploy-notebook?download_url=https%3A%2F%2Fraw.githubusercontent.com%2FGoogleCloudPlatform%2Fgenerative-ai%2Fmain%2Fgemini%2Fgrounding%2Fintro-grounding-gemini.ipynb)\n|\n|\n| \\|\n|\n[View on GitHub](https://github.com/GoogleCloudPlatform/generative-ai/blob/main/gemini/grounding/intro-grounding-gemini.ipynb) \n\nIn generative AI, grounding is the ability to connect model output to verifiable\nsources of information. If you provide models with access to specific data\nsources, then grounding tethers their output to these data and reduces the\nchances of inventing content. This is particularly important in situations where\naccuracy and reliability are significant.\n\nGrounding provides the following benefits:\n\n- Reduces model hallucinations, which are instances where the model generates content that isn't factual.\n- Anchors model responses to your data sources.\n- Provides auditability by providing grounding support, which are links to sources.\n\nYou can ground supported-model output in Vertex AI in the following ways:\n\nFor language support, see\n[Supported languages for prompts](/gemini/docs/codeassist/supported-languages#supported_languages_for_prompts).\n\nWhat's next\n-----------\n\n- To learn more about responsible AI best practices and Vertex AI's safety filters, see [Responsible AI](/vertex-ai/generative-ai/docs/learn/responsible-ai).\n- To ground with your Google Search API, see [Grounding with\n Google Search\n API](/vertex-ai/generative-ai/docs/grounding/grounding-with-google-search-api)."]]