Beispiel-Shop-Instanz erstellen oder wiederverwenden

Auf dieser Seite wird beschrieben, wie Sie eine neue Example Store-Instanz erstellen oder eine vorhandene wiederverwenden. Sie können Ihre Beispiele in einem Example Store speichern, wenn Sie Ihre LLM-Anwendung entwickeln, und sie dynamisch abrufen, um sie in Ihren LLM-Prompts zu verwenden.

Wenn Sie ein LLM oder einen Agenten mit Beispielen für Schnellerstellungen trainieren möchten, müssen Sie zuerst eine Example Store-Instanz für Ihr Projekt und Ihren Standort erstellen oder wiederverwenden und dann Beispiele hochladen.

Für jedes Projekt und jeden Standort können Sie maximal 50 Example Store-Instanzen haben. Nachdem Sie eine Example Store-Instanz erstellt haben, können Sie sie für mehrere LLM-Anwendungen und ‑Agents freigeben.

Es gibt zwei Möglichkeiten, eine Example Store-Instanz bereitzustellen:

  • Neue Example Store-Instanz erstellen: Wenn Sie eine neue Example Store-Instanz erstellen, müssen Sie das Einbettungsmodell angeben, das Example Store verwendet, um zu ermitteln, welche Beispiele für die Anfragen der Nutzer relevant sind. Example Store unterstützt die folgenden Einbettungsmodelle:

    • text-embedding-005

    • text-multilingual-embedding-002

    Sie können ein Einbettungsmodell nicht mehr ändern, nachdem Sie die Example Store-Instanz erstellt haben. Wenn Sie ein anderes Einbettungsmodell verwenden möchten, müssen Sie einen weiteren Beispielspeicher erstellen. Weitere Informationen zu Texteinbettungen finden Sie unter Texteinbettungen abrufen.

  • Vorhandene Example Store-Instanz wiederverwenden: Example Store-Instanzen sind für die Verwendung durch mehrere Agents konzipiert. Sie können also in allen LLM-Anwendungen auf die gespeicherten Beispiele zugreifen. Wenn Sie eine vorhandene Example Store-Instanz wiederverwenden, können Sie das Einbettungsmodell nicht ändern.

Vorbereitung

Bevor Sie die Python-Beispiele auf dieser Seite verwenden, installieren und initialisieren Sie das Vertex AI SDK für Python in Ihrer lokalen Python-Umgebung.

  1. Führen Sie den folgenden Befehl aus, um das Vertex AI SDK für Python für Example Store zu installieren.

    pip install --upgrade google-cloud-aiplatform>=1.87.0
  2. Verwenden Sie das folgende Codebeispiel, um das SDK für Example Store zu importieren und zu initialisieren.

    import vertexai
    from vertexai.preview import example_stores
    
    vertexai.init(
      project="PROJECT_ID",
      location="LOCATION"
    )
    

    Ersetzen Sie Folgendes:

    • PROJECT_ID: Ihre Projekt-ID.

    • LOCATION: Ihre Region. Nur us-central1 wird unterstützt.

Example Store-Instanz erstellen

Verwenden Sie die folgenden Beispiele, um eine Example Store-Instanz für ein bestimmtes Projekt und einen bestimmten Standort zu erstellen. Das Erstellen einer Example Store-Instanz dauert einige Minuten.

Python

Bevor Sie dieses Beispiel anwenden, folgen Sie den Python-Einrichtungsschritten in der Vertex AI-Kurzanleitung zur Verwendung von Clientbibliotheken. Weitere Informationen finden Sie in der Referenzdokumentation zur Vertex AI Python API.

Richten Sie zur Authentifizierung bei Vertex AI Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.

import vertexai
from vertexai.preview import example_stores

vertexai.init(
    project="PROJECT_ID",
    location="LOCATION"
)

my_example_store = example_stores.ExampleStore.create(
    example_store_config=example_stores.ExampleStoreConfig(
        vertex_embedding_model="EMBEDDING_MODEL"
    )
)

Ersetzen Sie Folgendes:

  • PROJECT_ID: Ihre Projekt-ID.
  • LOCATION: Die Region, in der Sie den Beispiel-Store erstellen möchten. Die einzige unterstützte Region ist us-central1.
  • EMBEDDING_MODEL: Das Einbettungsmodell, das von der Example Store-Instanz verwendet wird, um zu ermitteln, welche Beispiele für die Anfragen der Nutzer relevant sind. Beispielgeschäft unterstützt die folgenden Einbettungsmodelle:
    • text-embedding-004
    • text-multilingual-embedding-002

REST

Senden Sie zum Erstellen einer ExampleStore-Ressource eine POST-Anfrage mit der Methode exampleStores.create.

Ersetzen Sie diese Werte in den folgenden Anfragedaten:

  • PROJECT_ID: Ihre Projekt-ID.
  • LOCATION: Die Region, in der Sie die Example Store-Instanz erstellen möchten. Die einzige unterstützte Region ist us-central1.
  • DISPLAY_NAME: Der Name der Example Store-Instanz.
  • EMBEDDING_MODEL: Das Einbettungsmodell, das von der Example Store-Instanz verwendet wird, um zu ermitteln, welche Beispiele für die Anfragen der Nutzer relevant sind. Beispielgeschäft unterstützt die folgenden Einbettungsmodelle:
    • textembedding-gecko@003
    • text-embedding-004
    • text-multilingual-embedding-002

HTTP-Methode und URL:

POST https://LOCATION-aiplatform.googleapis.com/v1beta1/projects/PROJECT_ID/locations/LOCATION/exampleStores

JSON-Text der Anfrage:

{
  "display_name": "DISPLAY_NAME",
  "example_store_config": {"vertex_embedding_model": EMBEDDING_MODEL}
}

Wenn Sie die Anfrage senden möchten, wählen Sie eine der folgenden Optionen aus:

curl

Speichern Sie den Anfragetext in einer Datei mit dem Namen request.json und führen Sie den folgenden Befehl aus:

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://LOCATION-aiplatform.googleapis.com/v1beta1/projects/PROJECT_ID/locations/LOCATION/exampleStores"

PowerShell

Speichern Sie den Anfragetext in einer Datei mit dem Namen request.json und führen Sie den folgenden Befehl aus:

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://LOCATION-aiplatform.googleapis.com/v1beta1/projects/PROJECT_ID/locations/LOCATION/exampleStores" | Select-Object -Expand Content

Sie sollten eine JSON-Antwort ähnlich der folgenden erhalten, wobei EXAMPLE_STORE_ID die ID der Example Store-Instanz ist.

Vorhandene Example Store-Instanz wiederverwenden

Verwenden Sie das folgende Beispiel, um eine vorhandene Beispielshop-Instanz für ein bestimmtes Projekt und einen bestimmten Standort wiederzuverwenden.

Python

Bevor Sie dieses Beispiel anwenden, folgen Sie den Python-Einrichtungsschritten in der Vertex AI-Kurzanleitung zur Verwendung von Clientbibliotheken. Weitere Informationen finden Sie in der Referenzdokumentation zur Vertex AI Python API.

Richten Sie zur Authentifizierung bei Vertex AI Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.

import vertexai
from vertexai.preview import example_stores

vertexai.init(
    project="PROJECT_ID",
    location="LOCATION"
)

example_store = example_stores.ExampleStore(
    "EXAMPLE_STORE_NAME")

Ersetzen Sie Folgendes:

  • PROJECT_ID: Ihre Projekt-ID.
  • LOCATION: Die Region, in der Sie den Beispiel-Store erstellen möchten. Die einzige unterstützte Region ist us-central1.
  • EXAMPLE_STORE_NAME: Name der Example Store-Instanz, die Sie wiederverwenden möchten.

Nächste Schritte