音声理解(音声のみ)

Gemini リクエストに音声を追加して、含まれる音声の内容を理解するタスクを実行できます。このページでは、Google Cloud コンソールと Vertex AI API を使用して、Vertex AI の Gemini へのリクエストに音声を追加する方法について説明します。

サポートされているモデル

次の表に、音声理解をサポートするモデルを示します。

モデル 音声モダリティの詳細

Gemini 1.5 Flash

Gemini 1.5 Flash モデルカードに移動する

プロンプトあたりの音声の最大長: 8.4 時間以下または最大 100 万トークン。

音声の要約、文字起こし、翻訳のために音声を理解できます。

Gemini 1.5 Pro

Gemini 1.5 Pro モデルカードに移動する

プロンプトあたりの音声の最大長: 8.4 時間以下または最大 100 万トークン。

音声の要約、文字起こし、翻訳のために音声を理解できます。

Gemini モデルでサポートされている言語の一覧については、モデル情報の Google モデルをご覧ください。マルチモーダル プロンプトの設計方法について詳しくは、マルチモーダル プロンプトを設計するをご覧ください。モバイルアプリやウェブアプリから Gemini を直接使用することをお考えの場合は、Android、Swift、ウェブ、Flutter アプリの Vertex AI in Firebase SDK をご覧ください。

リクエストに音声を追加する

Gemini へのリクエストに音声ファイルを追加できます。

単一の音声

以下で、音声ファイルを使用してポッドキャストを要約する方法について説明します。

Python

Vertex AI SDK for Python のインストールまたは更新方法については、Vertex AI SDK for Python をインストールするをご覧ください。詳細については、Vertex AI SDK for Python API リファレンス ドキュメントをご覧ください。

ストリーミング レスポンスと非ストリーミング レスポンス

モデルがストリーミング レスポンスを生成するのか、非ストリーミング レスポンスを生成するのかについては、選択が可能です。ストリーミング レスポンスの場合、出力トークンが生成されるとすぐに各レスポンスが返されます。非ストリーミング レスポンスの場合、すべての出力トークンが生成された後にすべてのレスポンスが返されます。

ストリーミング レスポンスの場合は、generate_contentstream パラメータを使用します。

  response = model.generate_content(contents=[...], stream = True)
  

非ストリーミング レスポンスの場合は、パラメータを削除するか、パラメータを False に設定します。

サンプルコード


import vertexai
from vertexai.generative_models import GenerativeModel, Part

# TODO(developer): Update and un-comment below line
# PROJECT_ID = "your-project-id"

vertexai.init(project=PROJECT_ID, location="us-central1")

model = GenerativeModel("gemini-1.5-flash-002")

prompt = """
Please provide a summary for the audio.
Provide chapter titles, be concise and short, no need to provide chapter summaries.
Do not make up any information that is not part of the audio and do not be verbose.
"""

audio_file_uri = "gs://cloud-samples-data/generative-ai/audio/pixel.mp3"
audio_file = Part.from_uri(audio_file_uri, mime_type="audio/mpeg")

contents = [audio_file, prompt]

response = model.generate_content(contents)
print(response.text)
# Example response:
# **Made By Google Podcast Summary**
# **Chapter Titles:**
# * Introduction
# * Transformative Pixel Features
# ...

Java

このサンプルを試す前に、Vertex AI クイックスタートの Java の設定手順従って設定を行ってください。詳細については、Gemini 用の Vertex AI Java SDK のリファレンス ドキュメントをご覧ください。

Vertex AI に対する認証を行うには、アプリケーションのデフォルト認証情報を設定します。詳細については、ローカル開発環境の認証を設定するをご覧ください。

ストリーミング レスポンスと非ストリーミング レスポンス

モデルがストリーミング レスポンスを生成するのか、非ストリーミング レスポンスを生成するのかについては、選択が可能です。ストリーミング レスポンスの場合、出力トークンが生成されるとすぐに各レスポンスが返されます。非ストリーミング レスポンスの場合、すべての出力トークンが生成された後にすべてのレスポンスが返されます。

ストリーミング レスポンスの場合は、generateContentStream メソッドを使用します。

  public ResponseStream<GenerateContentResponse> generateContentStream(Content content)
  

非ストリーミング レスポンスの場合は、generateContent メソッドを使用します。

  public GenerateContentResponse generateContent(Content content)
  

サンプルコード

import com.google.cloud.vertexai.VertexAI;
import com.google.cloud.vertexai.api.GenerateContentResponse;
import com.google.cloud.vertexai.generativeai.ContentMaker;
import com.google.cloud.vertexai.generativeai.GenerativeModel;
import com.google.cloud.vertexai.generativeai.PartMaker;
import com.google.cloud.vertexai.generativeai.ResponseHandler;
import java.io.IOException;

public class AudioInputSummarization {

  public static void main(String[] args) throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "your-google-cloud-project-id";
    String location = "us-central1";
    String modelName = "gemini-1.5-flash-001";

    summarizeAudio(projectId, location, modelName);
  }

  // Analyzes the given audio input.
  public static String summarizeAudio(String projectId, String location, String modelName)
      throws IOException {
    // Initialize client that will be used to send requests. This client only needs
    // to be created once, and can be reused for multiple requests.
    try (VertexAI vertexAI = new VertexAI(projectId, location)) {
      String audioUri = "gs://cloud-samples-data/generative-ai/audio/pixel.mp3";

      GenerativeModel model = new GenerativeModel(modelName, vertexAI);
      GenerateContentResponse response = model.generateContent(
          ContentMaker.fromMultiModalData(
              "Please provide a summary for the audio.\n"
                  + "Provide chapter titles with timestamps, be concise and short, "
                  + "no need to provide chapter summaries.\n"
                  + "Do not make up any information that is not part of the audio "
                  + "and do not be verbose.",
              PartMaker.fromMimeTypeAndData("audio/mp3", audioUri)
          ));

      String output = ResponseHandler.getText(response);
      System.out.println(output);

      return output;
    }
  }
}

Node.js

このサンプルを試す前に、Node.js SDK を使用した生成 AI クイックスタートの Node.js の設定手順を行ってください。詳細については、Node.js SDK for Gemini リファレンス ドキュメントをご覧ください。

Vertex AI に対する認証を行うには、アプリケーションのデフォルト認証情報を設定します。詳細については、ローカル開発環境の認証を設定するをご覧ください。

ストリーミング レスポンスと非ストリーミング レスポンス

モデルがストリーミング レスポンスを生成するのか、非ストリーミング レスポンスを生成するのかについては、選択が可能です。ストリーミング レスポンスの場合、出力トークンが生成されるとすぐに各レスポンスが返されます。非ストリーミング レスポンスの場合、すべての出力トークンが生成された後にすべてのレスポンスが返されます。

ストリーミング レスポンスの場合は、generateContentStream メソッドを使用します。

  const streamingResp = await generativeModel.generateContentStream(request);
  

非ストリーミング レスポンスの場合は、generateContent メソッドを使用します。

  const streamingResp = await generativeModel.generateContent(request);
  

サンプルコード

const {VertexAI} = require('@google-cloud/vertexai');

/**
 * TODO(developer): Update these variables before running the sample.
 */
async function summarize_audio(projectId = 'PROJECT_ID') {
  const vertexAI = new VertexAI({project: projectId, location: 'us-central1'});

  const generativeModel = vertexAI.getGenerativeModel({
    model: 'gemini-1.5-flash-001',
  });

  const filePart = {
    file_data: {
      file_uri: 'gs://cloud-samples-data/generative-ai/audio/pixel.mp3',
      mime_type: 'audio/mpeg',
    },
  };
  const textPart = {
    text: `
    Please provide a summary for the audio.
    Provide chapter titles with timestamps, be concise and short, no need to provide chapter summaries.
    Do not make up any information that is not part of the audio and do not be verbose.`,
  };

  const request = {
    contents: [{role: 'user', parts: [filePart, textPart]}],
  };

  const resp = await generativeModel.generateContent(request);
  const contentResponse = await resp.response;
  console.log(JSON.stringify(contentResponse));
}

Go

このサンプルを試す前に、Vertex AI クイックスタートの Go の設定手順を実施してください。詳細については、Gemini 向け Vertex AI Go SDK のリファレンス ドキュメントをご覧ください。

Vertex AI に対する認証を行うには、アプリケーションのデフォルト認証情報を設定します。 詳細については、ローカル開発環境の認証を設定するをご覧ください。

ストリーミング レスポンスと非ストリーミング レスポンス

モデルがストリーミング レスポンスを生成するのか、非ストリーミング レスポンスを生成するのかについては、選択が可能です。ストリーミング レスポンスの場合、出力トークンが生成されるとすぐに各レスポンスが返されます。非ストリーミング レスポンスの場合、すべての出力トークンが生成された後にすべてのレスポンスが返されます。

ストリーミング レスポンスの場合は、GenerateContentStream メソッドを使用します。

  iter := model.GenerateContentStream(ctx, genai.Text("Tell me a story about a lumberjack and his giant ox. Keep it very short."))
  

非ストリーミング レスポンスの場合は、GenerateContent メソッドを使用します。

  resp, err := model.GenerateContent(ctx, genai.Text("What is the average size of a swallow?"))
  

サンプルコード

import (
	"context"
	"errors"
	"fmt"
	"io"
	"mime"
	"path/filepath"

	"cloud.google.com/go/vertexai/genai"
)

// summarizeAudio shows how to send an audio asset and a text question to a model, writing the response to the
// provided io.Writer.
func summarizeAudio(w io.Writer, projectID, location, modelName string) error {
	// location := "us-central1"
	// modelName := "gemini-1.5-flash-001"
	ctx := context.Background()

	client, err := genai.NewClient(ctx, projectID, location)
	if err != nil {
		return fmt.Errorf("unable to create client: %w", err)
	}
	defer client.Close()

	model := client.GenerativeModel(modelName)
	model.SetTemperature(0.4)

	// Given an audio file URL, prepare audio file as genai.Part
	part := genai.FileData{
		MIMEType: mime.TypeByExtension(filepath.Ext("pixel.mp3")),
		FileURI:  "gs://cloud-samples-data/generative-ai/audio/pixel.mp3",
	}

	res, err := model.GenerateContent(ctx, part, genai.Text(`
		Please provide a summary for the audio.
		Provide chapter titles with timestamps, be concise and short, no need to provide chapter summaries.
		Do not make up any information that is not part of the audio and do not be verbose.
	`,
	))
	if err != nil {
		return fmt.Errorf("unable to generate contents: %w", err)
	}

	if len(res.Candidates) == 0 ||
		len(res.Candidates[0].Content.Parts) == 0 {
		return errors.New("empty response from model")
	}

	fmt.Fprintf(w, "generated summary:\n%s\n", res.Candidates[0].Content.Parts[0])
	return nil
}

C#

このサンプルを試す前に、Vertex AI クイックスタートの C# の設定手順を実施してください。詳細については、Vertex AI C# のリファレンス ドキュメントをご覧ください。

Vertex AI に対する認証を行うには、アプリケーションのデフォルト認証情報を設定します。詳細については、ローカル開発環境の認証を設定するをご覧ください。

ストリーミング レスポンスと非ストリーミング レスポンス

モデルがストリーミング レスポンスを生成するのか、非ストリーミング レスポンスを生成するのかについては、選択が可能です。ストリーミング レスポンスの場合、出力トークンが生成されるとすぐに各レスポンスが返されます。非ストリーミング レスポンスの場合、すべての出力トークンが生成された後にすべてのレスポンスが返されます。

ストリーミング レスポンスの場合は、StreamGenerateContent メソッドを使用します。

  public virtual PredictionServiceClient.StreamGenerateContentStream StreamGenerateContent(GenerateContentRequest request)
  

非ストリーミング レスポンスの場合は、GenerateContentAsync メソッドを使用します。

  public virtual Task<GenerateContentResponse> GenerateContentAsync(GenerateContentRequest request)
  

サーバーがレスポンスをストリーミングする方法の詳細については、ストリーミング RPC をご覧ください。

サンプルコード


using Google.Cloud.AIPlatform.V1;
using System;
using System.Threading.Tasks;

public class AudioInputSummarization
{
    public async Task<string> SummarizeAudio(
        string projectId = "your-project-id",
        string location = "us-central1",
        string publisher = "google",
        string model = "gemini-1.5-flash-001")
    {
        var predictionServiceClient = new PredictionServiceClientBuilder
        {
            Endpoint = $"{location}-aiplatform.googleapis.com"
        }.Build();

        string prompt = @"Please provide a summary for the audio.
Provide chapter titles with timestamps, be concise and short, no need to provide chapter summaries.
Do not make up any information that is not part of the audio and do not be verbose.";

        var generateContentRequest = new GenerateContentRequest
        {
            Model = $"projects/{projectId}/locations/{location}/publishers/{publisher}/models/{model}",
            Contents =
            {
                new Content
                {
                    Role = "USER",
                    Parts =
                    {
                        new Part { Text = prompt },
                        new Part { FileData = new() { MimeType = "audio/mp3", FileUri = "gs://cloud-samples-data/generative-ai/audio/pixel.mp3" } }
                    }
                }
            }
        };

        GenerateContentResponse response = await predictionServiceClient.GenerateContentAsync(generateContentRequest);

        string responseText = response.Candidates[0].Content.Parts[0].Text;
        Console.WriteLine(responseText);

        return responseText;
    }
}

REST

環境をセットアップしたら、REST を使用してテキスト プロンプトをテストできます。次のサンプルは、パブリッシャー モデルのエンドポイントにリクエストを送信します。

リクエストのデータを使用する前に、次のように置き換えます。

  • LOCATION: リクエストを処理するリージョン。サポートされているリージョンを入力します。サポートされているリージョンの一覧については、利用可能なロケーションをご覧ください。

    クリックして、利用可能なリージョンの一部を開く

    • us-central1
    • us-west4
    • northamerica-northeast1
    • us-east4
    • us-west1
    • asia-northeast3
    • asia-southeast1
    • asia-northeast1
  • PROJECT_ID: 実際のプロジェクト ID
  • FILE_URI: プロンプトに含めるファイルの URI または URL。有効な値は次のとおりです。
    • Cloud Storage バケット URI: オブジェクトは一般公開されているか、リクエストを送信するプロジェクトと同じ Google Cloud プロジェクトに存在している必要があります。gemini-1.5-progemini-1.5-flash の場合、サイズの上限は 2 GB です。gemini-1.0-pro-vision の場合、サイズの上限は 20 MB です。
    • HTTP URL: ファイルの URL は一般公開されている必要があります。リクエストごとに 1 つの動画ファイル、1 つの音声ファイル、最大 10 個の画像ファイルを指定できます。音声ファイル、動画ファイル、ドキュメントのサイズは 15 MB 以下にする必要があります。
    • YouTube 動画の URL: YouTube 動画は、Google Cloud コンソールのログインに使用したアカウントが所有しているか、公開されている必要があります。リクエストごとにサポートされる YouTube 動画の URL は 1 つだけです。

    fileURI を指定する場合は、ファイルのメディアタイプ(mimeType)も指定する必要があります。

    Cloud Storage に音声ファイルがない場合は、MIME タイプが audio/mp3 の一般公開ファイル gs://cloud-samples-data/generative-ai/audio/pixel.mp3 を使用できます。この音声を聴くには、サンプル MP3 ファイルを開きます

  • MIME_TYPE: data フィールドまたは fileUri フィールドで指定されたファイルのメディアタイプ。指定できる値は次のとおりです。

    クリックして MIME タイプを開く

    • application/pdf
    • audio/mpeg
    • audio/mp3
    • audio/wav
    • image/png
    • image/jpeg
    • image/webp
    • text/plain
    • video/mov
    • video/mpeg
    • video/mp4
    • video/mpg
    • video/avi
    • video/wmv
    • video/mpegps
    • video/flv
  • TEXT
    プロンプトに含める指示のテキスト。例: Please provide a summary for the audio. Provide chapter titles, be concise and short, no need to provide chapter summaries. Do not make up any information that is not part of the audio and do not be verbose.

リクエストを送信するには、次のいずれかのオプションを選択します。

curl

リクエスト本文を request.json という名前のファイルに保存します。ターミナルで次のコマンドを実行して、このファイルを現在のディレクトリに作成または上書きします。

cat > request.json << 'EOF'
{
  "contents": {
    "role": "USER",
    "parts": [
      {
        "fileData": {
          "fileUri": "FILE_URI",
          "mimeType": "MIME_TYPE"
        }
      },
      {
        "text": "TEXT"
      }
    ]
  }
}
EOF

その後、次のコマンドを実行して REST リクエストを送信します。

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/publishers/google/models/gemini-1.5-flash:generateContent"

PowerShell

リクエスト本文を request.json という名前のファイルに保存します。ターミナルで次のコマンドを実行して、このファイルを現在のディレクトリに作成または上書きします。

@'
{
  "contents": {
    "role": "USER",
    "parts": [
      {
        "fileData": {
          "fileUri": "FILE_URI",
          "mimeType": "MIME_TYPE"
        }
      },
      {
        "text": "TEXT"
      }
    ]
  }
}
'@  | Out-File -FilePath request.json -Encoding utf8

その後、次のコマンドを実行して REST リクエストを送信します。

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/publishers/google/models/gemini-1.5-flash:generateContent" | Select-Object -Expand Content

次のような JSON レスポンスが返されます。

このサンプルの URL にある次の点に注意してください。
  • generateContent メソッドを使用して、レスポンスが完全に生成された後に返されるようにリクエストします。ユーザーが認識するレイテンシを短縮するには、streamGenerateContent メソッドを使用して、生成時にレスポンスをストリーミングします。
  • マルチモーダル モデル ID は、URL の末尾のメソッドの前に配置されます(例: gemini-1.5-flashgemini-1.0-pro-vision)。このサンプルでは、他のモデルもサポートされている場合があります。

コンソール

Google Cloud コンソールを使用してマルチモーダル プロンプトを送信する手順は次のとおりです。

  1. Google Cloud コンソールの [Vertex AI] セクションで、[Vertex AI Studio] ページに移動します。

    Vertex AI Studio に移動

  2. [自由形式を開く] をクリックします。

  3. 省略可: モデルとパラメータを構成します。

    • Model: モデルを選択します。
    • リージョン: 使用するリージョンを選択します。
    • 温度: スライダーまたはテキスト ボックスを使用して、温度の値を入力します。

      温度は、レスポンス生成時のサンプリングに使用されます。レスポンス生成は、topPtopK が適用された場合に発生します。温度は、トークン選択のランダム性の度合いを制御します。温度が低いほど、確定的で自由度や創造性を抑えたレスポンスが求められるプロンプトに適しています。一方、温度が高いと、より多様で創造的な結果を導くことができます。温度が 0 の場合、確率が最も高いトークンが常に選択されます。この場合、特定のプロンプトに対するレスポンスはほとんど確定的ですが、わずかに変動する可能性は残ります。

      モデルが返すレスポンスが一般的すぎたり、短すぎたり、フォールバック(代替)レスポンスが返ってきたりする場合は、Temperature を高くしてみてください。

    • 出力トークンの上限: スライダーまたはテキスト ボックスを使用して、最大出力の上限値を入力します。

      レスポンスで生成できるトークンの最大数。1 トークンは約 4 文字です。100 トークンは約 60~80 語に相当します。

      レスポンスを短くしたい場合は小さい値を、長くしたい場合は大きい値を指定します。

    • 停止シーケンスを追加: 省略可。停止シーケンスを入力します。これはスペースを含む文字列です。モデルが停止シーケンスに遭遇すると、レスポンスの生成が停止します。停止シーケンスはレスポンスには含まれません。停止シーケンスは 5 つまで追加できます。

  4. 省略可: 詳細パラメータを構成するには、[詳細] をクリックして、次のように構成します。

    クリックして詳細構成を開く

    • トップ K: スライダーまたはテキスト ボックスを使用して、トップ K の値を入力します。(Gemini 1.5 ではサポートされていません)。

      Top-K は、モデルが出力用にトークンを選択する方法を変更します。Top-K が 1 の場合、次に選択されるトークンは、モデルの語彙内のすべてのトークンで最も確率の高いものであることになります(グリーディ デコードとも呼ばれます)。Top-K が 3 の場合は、最も確率が高い上位 3 つのトークンから次のトークン選択されることになります(温度を使用します)。

      トークン選択のそれぞれのステップで、最も高い確率を持つ Top-K のトークンがサンプリングされます。その後、トークンはトップ P に基づいてさらにフィルタリングされ、最終的なトークンは温度サンプリングを用いて選択されます。

      ランダムなレスポンスを減らしたい場合は小さい値を、ランダムなレスポンスを増やしたい場合は大きい値を指定します。

    • トップ P: スライダーまたはテキスト ボックスを使用して、トップ P の値を入力します。確率の合計が Top-P の値と等しくなるまで、最も確率が高いものから最も確率が低いものの順に、トークンが選択されます。結果を最小にするには、Top-P を 0 に設定します。
    • 最大レスポンス数: スライダーまたはテキスト ボックスを使用して、生成するレスポンスを入力します。
    • レスポンスのストリーミング: 有効にすると、レスポンスが生成されたときに出力されます。
    • 安全フィルタのしきい値: 有害な可能性があるレスポンスが表示される可能性のしきい値を選択します。
    • 根拠づけを有効にする: マルチモーダル プロンプトではグラウンドはサポートされていません。

  5. [メディアを挿入] をクリックし、ファイルのソースを選択します。

    不足している dSYM をアップロードしてください。

    アップロードするファイルを選択し、[開く] をクリックします。

    URL

    使用するファイルの URL を入力し、[挿入] をクリックします。

    Cloud Storage

    バケットを選択し、バケットからインポートするファイルを選択し、[選択] をクリックします。

    Google ドライブ

    1. このオプションを初めて選択するときに、アカウントを選択して Vertex AI Studio がアカウントにアクセスできるように同意します。合計サイズが最大 10 MB の複数のファイルをアップロードできます。1 つのファイルのサイズは 7 MB を超えないようにしてください。
    2. 追加するファイルをクリックします。
    3. [選択] をクリックします。

      ファイルのサムネイルが [プロンプト] ペインに表示されます。トークンの合計数も表示されます。プロンプト データがトークンの上限を超えると、トークンは切り捨てられ、データの処理には含まれません。

  6. [プロンプト] ペインにテキスト プロンプトを入力します。

  7. 省略可: [トークン ID からテキスト] と [トークン ID] を表示するには、[プロンプト] ペインで [トークン数] をクリックします。

  8. [送信] をクリックします。

  9. 省略可: プロンプトを [マイプロンプト] に保存するには、[ 保存] をクリックします。

  10. 省略可: プロンプトの Python コードまたは curl コマンドを取得するには、[ コードを取得] をクリックします。

音声文字変換

以下では、音声ファイルを使用してインタビューを文字に変換する方法について説明します。音声のみのファイルでタイムスタンプの認識を有効にするには、GenerationConfigaudioTimestamp パラメータを有効にします。

Python

Vertex AI SDK for Python をインストールまたは更新する方法については、Vertex AI SDK for Python をインストールするをご覧ください。詳細については、Vertex AI SDK for Python API リファレンス ドキュメントをご覧ください。

ストリーミング レスポンスと非ストリーミング レスポンス

モデルがストリーミング レスポンスを生成するのか、非ストリーミング レスポンスを生成するのかについては、選択が可能です。ストリーミング レスポンスの場合、出力トークンが生成されるとすぐに各レスポンスが返されます。非ストリーミング レスポンスの場合、すべての出力トークンが生成された後にすべてのレスポンスが返されます。

ストリーミング レスポンスの場合は、generate_contentstream パラメータを使用します。

  response = model.generate_content(contents=[...], stream = True)
  

非ストリーミング レスポンスの場合は、パラメータを削除するか、パラメータを False に設定します。

サンプルコード


import vertexai
from vertexai.generative_models import GenerativeModel, GenerationConfig, Part

# TODO(developer): Update and un-comment below line
# PROJECT_ID = "your-project-id"

vertexai.init(project=PROJECT_ID, location="us-central1")

model = GenerativeModel("gemini-1.5-flash-002")

prompt = """
Can you transcribe this interview, in the format of timecode, speaker, caption.
Use speaker A, speaker B, etc. to identify speakers.
"""

audio_file_uri = "gs://cloud-samples-data/generative-ai/audio/pixel.mp3"
audio_file = Part.from_uri(audio_file_uri, mime_type="audio/mpeg")

contents = [audio_file, prompt]

response = model.generate_content(contents, generation_config=GenerationConfig(audio_timestamp=True))

print(response.text)
# Example response:
# [00:00:00] Speaker A: Your devices are getting better over time...
# [00:00:16] Speaker B: Welcome to the Made by Google podcast, ...
# [00:01:00] Speaker A: So many features. I am a singer. ...
# [00:01:33] Speaker B: Amazing. DeCarlos, same question to you, ...

Java

このサンプルを試す前に、Vertex AI クイックスタートの Java の設定手順従って設定を行ってください。詳細については、Gemini 用の Vertex AI Java SDK のリファレンス ドキュメントをご覧ください。

Vertex AI に対する認証を行うには、アプリケーションのデフォルト認証情報を設定します。詳細については、ローカル開発環境の認証を設定するをご覧ください。

ストリーミング レスポンスと非ストリーミング レスポンス

モデルがストリーミング レスポンスを生成するのか、非ストリーミング レスポンスを生成するのかについては、選択が可能です。ストリーミング レスポンスの場合、出力トークンが生成されるとすぐに各レスポンスが返されます。非ストリーミング レスポンスの場合、すべての出力トークンが生成された後にすべてのレスポンスが返されます。

ストリーミング レスポンスの場合は、generateContentStream メソッドを使用します。

  public ResponseStream<GenerateContentResponse> generateContentStream(Content content)
  

非ストリーミング レスポンスの場合は、generateContent メソッドを使用します。

  public GenerateContentResponse generateContent(Content content)
  

サンプルコード

import com.google.cloud.vertexai.VertexAI;
import com.google.cloud.vertexai.api.GenerateContentResponse;
import com.google.cloud.vertexai.generativeai.ContentMaker;
import com.google.cloud.vertexai.generativeai.GenerativeModel;
import com.google.cloud.vertexai.generativeai.PartMaker;
import com.google.cloud.vertexai.generativeai.ResponseHandler;
import java.io.IOException;

public class AudioInputTranscription {

  public static void main(String[] args) throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "your-google-cloud-project-id";
    String location = "us-central1";
    String modelName = "gemini-1.5-flash-001";

    transcribeAudio(projectId, location, modelName);
  }

  // Analyzes the given audio input.
  public static String transcribeAudio(String projectId, String location, String modelName)
      throws IOException {
    // Initialize client that will be used to send requests. This client only needs
    // to be created once, and can be reused for multiple requests.
    try (VertexAI vertexAI = new VertexAI(projectId, location)) {
      String audioUri = "gs://cloud-samples-data/generative-ai/audio/pixel.mp3";

      GenerativeModel model = new GenerativeModel(modelName, vertexAI);
      GenerateContentResponse response = model.generateContent(
          ContentMaker.fromMultiModalData(
              "Can you transcribe this interview, in the format of timecode, speaker, caption.\n"
                  + "Use speaker A, speaker B, etc. to identify speakers.",
              PartMaker.fromMimeTypeAndData("audio/mp3", audioUri)
          ));

      String output = ResponseHandler.getText(response);
      System.out.println(output);

      return output;
    }
  }
}

Node.js

このサンプルを試す前に、Node.js SDK を使用した生成 AI クイックスタートの Node.js の設定手順を行ってください。詳細については、Node.js SDK for Gemini リファレンス ドキュメントをご覧ください。

Vertex AI に対する認証を行うには、アプリケーションのデフォルト認証情報を設定します。詳細については、ローカル開発環境の認証を設定するをご覧ください。

ストリーミング レスポンスと非ストリーミング レスポンス

モデルがストリーミング レスポンスを生成するのか、非ストリーミング レスポンスを生成するのかについては、選択が可能です。ストリーミング レスポンスの場合、出力トークンが生成されるとすぐに各レスポンスが返されます。非ストリーミング レスポンスの場合、すべての出力トークンが生成された後にすべてのレスポンスが返されます。

ストリーミング レスポンスの場合は、generateContentStream メソッドを使用します。

  const streamingResp = await generativeModel.generateContentStream(request);
  

非ストリーミング レスポンスの場合は、generateContent メソッドを使用します。

  const streamingResp = await generativeModel.generateContent(request);
  

サンプルコード

const {VertexAI} = require('@google-cloud/vertexai');

/**
 * TODO(developer): Update these variables before running the sample.
 */
async function transcript_audio(projectId = 'PROJECT_ID') {
  const vertexAI = new VertexAI({project: projectId, location: 'us-central1'});

  const generativeModel = vertexAI.getGenerativeModel({
    model: 'gemini-1.5-flash-001',
  });

  const filePart = {
    file_data: {
      file_uri: 'gs://cloud-samples-data/generative-ai/audio/pixel.mp3',
      mime_type: 'audio/mpeg',
    },
  };
  const textPart = {
    text: `
    Can you transcribe this interview, in the format of timecode, speaker, caption?
    Use speaker A, speaker B, etc. to identify speakers.`,
  };

  const request = {
    contents: [{role: 'user', parts: [filePart, textPart]}],
  };

  const resp = await generativeModel.generateContent(request);
  const contentResponse = await resp.response;
  console.log(JSON.stringify(contentResponse));
}

Go

このサンプルを試す前に、Vertex AI クイックスタートの Go の設定手順を実施してください。詳細については、Gemini 向け Vertex AI Go SDK のリファレンス ドキュメントをご覧ください。

Vertex AI に対する認証を行うには、アプリケーションのデフォルト認証情報を設定します。 詳細については、ローカル開発環境の認証を設定するをご覧ください。

ストリーミング レスポンスと非ストリーミング レスポンス

モデルがストリーミング レスポンスを生成するのか、非ストリーミング レスポンスを生成するのかについては、選択が可能です。ストリーミング レスポンスの場合、出力トークンが生成されるとすぐに各レスポンスが返されます。非ストリーミング レスポンスの場合、すべての出力トークンが生成された後にすべてのレスポンスが返されます。

ストリーミング レスポンスの場合は、GenerateContentStream メソッドを使用します。

  iter := model.GenerateContentStream(ctx, genai.Text("Tell me a story about a lumberjack and his giant ox. Keep it very short."))
  

非ストリーミング レスポンスの場合は、GenerateContent メソッドを使用します。

  resp, err := model.GenerateContent(ctx, genai.Text("What is the average size of a swallow?"))
  

サンプルコード

import (
	"context"
	"errors"
	"fmt"
	"io"
	"mime"
	"path/filepath"

	"cloud.google.com/go/vertexai/genai"
)

// transcribeAudio generates a response into w
func transcribeAudio(w io.Writer, projectID, location, modelName string) error {
	// location := "us-central1"
	// modelName := "gemini-1.5-flash-001"

	ctx := context.Background()

	client, err := genai.NewClient(ctx, projectID, location)
	if err != nil {
		return fmt.Errorf("unable to create client: %w", err)
	}
	defer client.Close()

	model := client.GenerativeModel(modelName)

	// Optional: set an explicit temperature
	model.SetTemperature(0.4)

	// Given an audio file URL, prepare audio file as genai.Part
	img := genai.FileData{
		MIMEType: mime.TypeByExtension(filepath.Ext("pixel.mp3")),
		FileURI:  "gs://cloud-samples-data/generative-ai/audio/pixel.mp3",
	}

	res, err := model.GenerateContent(ctx, img, genai.Text(`
			Can you transcribe this interview, in the format of timecode, speaker, caption.
			Use speaker A, speaker B, etc. to identify speakers.
	`))
	if err != nil {
		return fmt.Errorf("unable to generate contents: %w", err)
	}

	if len(res.Candidates) == 0 ||
		len(res.Candidates[0].Content.Parts) == 0 {
		return errors.New("empty response from model")
	}

	fmt.Fprintf(w, "generated transcript:\n%s\n", res.Candidates[0].Content.Parts[0])
	return nil
}

C#

このサンプルを試す前に、Vertex AI クイックスタートの C# の設定手順を実施してください。詳細については、Vertex AI C# のリファレンス ドキュメントをご覧ください。

Vertex AI に対する認証を行うには、アプリケーションのデフォルト認証情報を設定します。詳細については、ローカル開発環境の認証を設定するをご覧ください。

ストリーミング レスポンスと非ストリーミング レスポンス

モデルがストリーミング レスポンスを生成するのか、非ストリーミング レスポンスを生成するのかについては、選択が可能です。ストリーミング レスポンスの場合、出力トークンが生成されるとすぐに各レスポンスが返されます。非ストリーミング レスポンスの場合、すべての出力トークンが生成された後にすべてのレスポンスが返されます。

ストリーミング レスポンスの場合は、StreamGenerateContent メソッドを使用します。

  public virtual PredictionServiceClient.StreamGenerateContentStream StreamGenerateContent(GenerateContentRequest request)
  

非ストリーミング レスポンスの場合は、GenerateContentAsync メソッドを使用します。

  public virtual Task<GenerateContentResponse> GenerateContentAsync(GenerateContentRequest request)
  

サーバーがレスポンスをストリーミングする方法の詳細については、ストリーミング RPC をご覧ください。

サンプルコード


using Google.Cloud.AIPlatform.V1;
using System;
using System.Threading.Tasks;

public class AudioInputTranscription
{
    public async Task<string> TranscribeAudio(
        string projectId = "your-project-id",
        string location = "us-central1",
        string publisher = "google",
        string model = "gemini-1.5-flash-001")
    {

        var predictionServiceClient = new PredictionServiceClientBuilder
        {
            Endpoint = $"{location}-aiplatform.googleapis.com"
        }.Build();

        string prompt = @"Can you transcribe this interview, in the format of timecode, speaker, caption.
Use speaker A, speaker B, etc. to identify speakers.";

        var generateContentRequest = new GenerateContentRequest
        {
            Model = $"projects/{projectId}/locations/{location}/publishers/{publisher}/models/{model}",
            Contents =
            {
                new Content
                {
                    Role = "USER",
                    Parts =
                    {
                        new Part { Text = prompt },
                        new Part { FileData = new() { MimeType = "audio/mp3", FileUri = "gs://cloud-samples-data/generative-ai/audio/pixel.mp3" } }
                    }
                }
            }
        };

        GenerateContentResponse response = await predictionServiceClient.GenerateContentAsync(generateContentRequest);

        string responseText = response.Candidates[0].Content.Parts[0].Text;
        Console.WriteLine(responseText);

        return responseText;
    }
}

REST

環境をセットアップしたら、REST を使用してテキスト プロンプトをテストできます。次のサンプルは、パブリッシャー モデルのエンドポイントにリクエストを送信します。

リクエストのデータを使用する前に、次のように置き換えます。

  • LOCATION: リクエストを処理するリージョン。サポートされているリージョンを入力します。サポートされているリージョンの一覧については、利用可能なロケーションをご覧ください。

    クリックして、利用可能なリージョンの一部を開く

    • us-central1
    • us-west4
    • northamerica-northeast1
    • us-east4
    • us-west1
    • asia-northeast3
    • asia-southeast1
    • asia-northeast1
  • PROJECT_ID: 実際のプロジェクト ID
  • FILE_URI: プロンプトに含めるファイルの URI または URL。有効な値は次のとおりです。
    • Cloud Storage バケット URI: オブジェクトは一般公開されているか、リクエストを送信するプロジェクトと同じ Google Cloud プロジェクトに存在している必要があります。gemini-1.5-progemini-1.5-flash の場合、サイズの上限は 2 GB です。gemini-1.0-pro-vision の場合、サイズの上限は 20 MB です。
    • HTTP URL: ファイルの URL は一般公開されている必要があります。リクエストごとに 1 つの動画ファイル、1 つの音声ファイル、最大 10 個の画像ファイルを指定できます。音声ファイル、動画ファイル、ドキュメントのサイズは 15 MB 以下にする必要があります。
    • YouTube 動画の URL: YouTube 動画は、Google Cloud コンソールのログインに使用したアカウントが所有しているか、公開されている必要があります。リクエストごとにサポートされる YouTube 動画の URL は 1 つだけです。

    fileURI を指定する場合は、ファイルのメディアタイプ(mimeType)も指定する必要があります。

    Cloud Storage に音声ファイルがない場合は、MIME タイプが audio/mp3 の一般公開ファイル gs://cloud-samples-data/generative-ai/audio/pixel.mp3 を使用できます。この音声を聴くには、サンプル MP3 ファイルを開きます

  • MIME_TYPE: data フィールドまたは fileUri フィールドで指定されたファイルのメディアタイプ。指定できる値は次のとおりです。

    クリックして MIME タイプを開く

    • application/pdf
    • audio/mpeg
    • audio/mp3
    • audio/wav
    • image/png
    • image/jpeg
    • image/webp
    • text/plain
    • video/mov
    • video/mpeg
    • video/mp4
    • video/mpg
    • video/avi
    • video/wmv
    • video/mpegps
    • video/flv
  • TEXT
    プロンプトに含める指示のテキスト。例: Can you transcribe this interview, in the format of timecode, speaker, caption. Use speaker A, speaker B, etc. to identify speakers.

リクエストを送信するには、次のいずれかのオプションを選択します。

curl

リクエスト本文を request.json という名前のファイルに保存します。ターミナルで次のコマンドを実行して、このファイルを現在のディレクトリに作成または上書きします。

cat > request.json << 'EOF'
{
  "contents": {
    "role": "USER",
    "parts": [
      {
        "fileData": {
          "fileUri": "FILE_URI",
          "mimeType": "MIME_TYPE"
        }
      },
      {
        "text": "TEXT"
      }
    ]
  },
  "generatationConfig": {
    "audioTimestamp": true
  }
}
EOF

その後、次のコマンドを実行して REST リクエストを送信します。

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/publishers/google/models/gemini-1.5-flash:generateContent"

PowerShell

リクエスト本文を request.json という名前のファイルに保存します。ターミナルで次のコマンドを実行して、このファイルを現在のディレクトリに作成または上書きします。

@'
{
  "contents": {
    "role": "USER",
    "parts": [
      {
        "fileData": {
          "fileUri": "FILE_URI",
          "mimeType": "MIME_TYPE"
        }
      },
      {
        "text": "TEXT"
      }
    ]
  },
  "generatationConfig": {
    "audioTimestamp": true
  }
}
'@  | Out-File -FilePath request.json -Encoding utf8

その後、次のコマンドを実行して REST リクエストを送信します。

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/publishers/google/models/gemini-1.5-flash:generateContent" | Select-Object -Expand Content

次のような JSON レスポンスが返されます。

このサンプルの URL にある次の点に注意してください。
  • generateContent メソッドを使用して、レスポンスが完全に生成された後に返されるようにリクエストします。ユーザーが認識するレイテンシを短縮するには、streamGenerateContent メソッドを使用して、生成時にレスポンスをストリーミングします。
  • マルチモーダル モデル ID は、URL の末尾のメソッドの前に配置されます(例: gemini-1.5-flashgemini-1.0-pro-vision)。このサンプルでは、他のモデルもサポートされている場合があります。

コンソール

Google Cloud コンソールを使用してマルチモーダル プロンプトを送信する手順は次のとおりです。

  1. Google Cloud コンソールの [Vertex AI] セクションで、[Vertex AI Studio] ページに移動します。

    Vertex AI Studio に移動

  2. [自由形式を開く] をクリックします。

  3. 省略可: モデルとパラメータを構成します。

    • Model: モデルを選択します。
    • リージョン: 使用するリージョンを選択します。
    • 温度: スライダーまたはテキスト ボックスを使用して、温度の値を入力します。

      温度は、レスポンス生成時のサンプリングに使用されます。レスポンス生成は、topPtopK が適用された場合に発生します。温度は、トークン選択のランダム性の度合いを制御します。温度が低いほど、確定的で自由度や創造性を抑えたレスポンスが求められるプロンプトに適しています。一方、温度が高いと、より多様で創造的な結果を導くことができます。温度が 0 の場合、確率が最も高いトークンが常に選択されます。この場合、特定のプロンプトに対するレスポンスはほとんど確定的ですが、わずかに変動する可能性は残ります。

      モデルが返すレスポンスが一般的すぎたり、短すぎたり、フォールバック(代替)レスポンスが返ってきたりする場合は、Temperature を高くしてみてください。

    • 出力トークンの上限: スライダーまたはテキスト ボックスを使用して、最大出力の上限値を入力します。

      レスポンスで生成できるトークンの最大数。1 トークンは約 4 文字です。100 トークンは約 60~80 語に相当します。

      レスポンスを短くしたい場合は小さい値を、長くしたい場合は大きい値を指定します。

    • 停止シーケンスを追加: 省略可。停止シーケンスを入力します。これはスペースを含む文字列です。モデルが停止シーケンスに遭遇すると、レスポンスの生成が停止します。停止シーケンスはレスポンスには含まれません。停止シーケンスは 5 つまで追加できます。

  4. 省略可: 詳細パラメータを構成するには、[詳細] をクリックして、次のように構成します。

    クリックして詳細構成を開く

    • トップ K: スライダーまたはテキスト ボックスを使用して、トップ K の値を入力します。(Gemini 1.5 ではサポートされていません)。

      Top-K は、モデルが出力用にトークンを選択する方法を変更します。Top-K が 1 の場合、次に選択されるトークンは、モデルの語彙内のすべてのトークンで最も確率の高いものであることになります(グリーディ デコードとも呼ばれます)。Top-K が 3 の場合は、最も確率が高い上位 3 つのトークンから次のトークン選択されることになります(温度を使用します)。

      トークン選択のそれぞれのステップで、最も高い確率を持つ Top-K のトークンがサンプリングされます。その後、トークンはトップ P に基づいてさらにフィルタリングされ、最終的なトークンは温度サンプリングを用いて選択されます。

      ランダムなレスポンスを減らしたい場合は小さい値を、ランダムなレスポンスを増やしたい場合は大きい値を指定します。

    • トップ P: スライダーまたはテキスト ボックスを使用して、トップ P の値を入力します。確率の合計が Top-P の値と等しくなるまで、最も確率が高いものから最も確率が低いものの順に、トークンが選択されます。結果を最小にするには、Top-P を 0 に設定します。
    • 最大レスポンス数: スライダーまたはテキスト ボックスを使用して、生成するレスポンスを入力します。
    • レスポンスのストリーミング: 有効にすると、レスポンスが生成されたときに出力されます。
    • 安全フィルタのしきい値: 有害な可能性があるレスポンスが表示される可能性のしきい値を選択します。
    • 根拠づけを有効にする: マルチモーダル プロンプトではグラウンドはサポートされていません。

  5. [メディアを挿入] をクリックし、ファイルのソースを選択します。

    不足している dSYM をアップロードしてください。

    アップロードするファイルを選択し、[開く] をクリックします。

    URL

    使用するファイルの URL を入力し、[挿入] をクリックします。

    Cloud Storage

    バケットを選択し、バケットからインポートするファイルを選択し、[選択] をクリックします。

    Google ドライブ

    1. このオプションを初めて選択するときに、アカウントを選択して Vertex AI Studio がアカウントにアクセスできるように同意します。合計サイズが最大 10 MB の複数のファイルをアップロードできます。1 つのファイルのサイズは 7 MB を超えないようにしてください。
    2. 追加するファイルをクリックします。
    3. [選択] をクリックします。

      ファイルのサムネイルが [プロンプト] ペインに表示されます。トークンの合計数も表示されます。プロンプト データがトークンの上限を超えると、トークンは切り捨てられ、データの処理には含まれません。

  6. [プロンプト] ペインにテキスト プロンプトを入力します。

  7. 省略可: [トークン ID からテキスト] と [トークン ID] を表示するには、[プロンプト] ペインで [トークン数] をクリックします。

  8. [送信] をクリックします。

  9. 省略可: プロンプトを [マイプロンプト] に保存するには、[ 保存] をクリックします。

  10. 省略可: プロンプトの Python コードまたは curl コマンドを取得するには、[ コードを取得] をクリックします。

オプションのモデル パラメータを設定する

各モデルには、設定できる一連のオプション パラメータがあります。詳細については、コンテンツ生成パラメータをご覧ください。

音声の要件

Gemini マルチモーダル モデルは、次の音声 MIME タイプをサポートしています。

音声 MIME タイプ Gemini 1.5 Flash Gemini 1.5 Pro
AAC - audio/aac
FLAC - audio/flac
MP3 - audio/mp3
MPA - audio/m4a
MPEG - audio/mpeg
MPGA - audio/mpga
MP4 - audio/mp4
OPUS - audio/opus
PCM - audio/pcm
WAV - audio/wav
WEBM - audio/webm

プロンプト リクエストには、最大で 1 つの音声ファイルを含めることができます。

制限事項

Gemini マルチモーダル モデルは多くのマルチモーダル ユースケースに対応していますが、モデルの制限事項も理解しておく必要があります。

  • 非音声の認識: 音声をサポートするモデルでは、音声以外の音を認識する際に誤りが発生する可能性があります。
  • 音声のみのタイムスタンプ: 音声のみのファイルのタイムスタンプを正確に生成するには、generation_configaudio_timestamp パラメータを構成する必要があります。
  • 音声文字変換の句読点:(Gemini 1.5 Flash を使用している場合)モデルから返される音声文字変換に句読点が含まれない場合があります。

次のステップ