使用 Chat Completions API 调用 Gemini
以下示例展示了如何发送非流式请求:
REST
curl -X POST \ -H "Authorization: Bearer $(gcloud auth print-access-token)" \ -H "Content-Type: application/json" \ https://${LOCATION}-aiplatform.googleapis.com/v1beta1/projects/${PROJECT_ID}/locations/${LOCATION}/endpoints/openapi/chat/completions \ -d '{ "model": "google/${MODEL_ID}", "messages": [{ "role": "user", "content": "Write a story about a magic backpack." }] }'
Python
在尝试此示例之前,请按照《Vertex AI 快速入门:使用客户端库》中的 Python 设置说明执行操作。 如需了解详情,请参阅 Vertex AI Python API 参考文档。
如需向 Vertex AI 进行身份验证,请设置应用默认凭据。 如需了解详情,请参阅为本地开发环境设置身份验证。
以下示例展示了如何使用 Chat Completions API 向 Gemini 模型发送流式传输请求:
REST
curl -X POST \ -H "Authorization: Bearer $(gcloud auth print-access-token)" \ -H "Content-Type: application/json" \ https://${LOCATION}-aiplatform.googleapis.com/v1beta1/projects/${PROJECT_ID}/locations/${LOCATION}/endpoints/openapi/chat/completions \ -d '{ "model": "google/${MODEL_ID}", "stream": true, "messages": [{ "role": "user", "content": "Write a story about a magic backpack." }] }'
Python
在尝试此示例之前,请按照《Vertex AI 快速入门:使用客户端库》中的 Python 设置说明执行操作。 如需了解详情,请参阅 Vertex AI Python API 参考文档。
如需向 Vertex AI 进行身份验证,请设置应用默认凭据。 如需了解详情,请参阅为本地开发环境设置身份验证。
向 Vertex AI Gemini API 发送提示和图片
Python
在尝试此示例之前,请按照《Vertex AI 快速入门:使用客户端库》中的 Python 设置说明执行操作。 如需了解详情,请参阅 Vertex AI Python API 参考文档。
如需向 Vertex AI 进行身份验证,请设置应用默认凭据。 如需了解详情,请参阅为本地开发环境设置身份验证。
使用 Chat Completions API 调用自行部署的模型
以下示例展示了如何发送非流式请求:
REST
curl -X POST \ -H "Authorization: Bearer $(gcloud auth print-access-token)" \ -H "Content-Type: application/json" \ https://aiplatform.googleapis.com/v1beta1/projects/${PROJECT_ID}/locations/global/endpoints/${ENDPOINT}/chat/completions \ -d '{ "messages": [{ "role": "user", "content": "Write a story about a magic backpack." }] }'
Python
在尝试此示例之前,请按照《Vertex AI 快速入门:使用客户端库》中的 Python 设置说明执行操作。 如需了解详情,请参阅 Vertex AI Python API 参考文档。
如需向 Vertex AI 进行身份验证,请设置应用默认凭据。 如需了解详情,请参阅为本地开发环境设置身份验证。
以下示例展示了如何使用 Chat Completions API 向自行部署的模型发送流式传输请求:
REST
curl -X POST \ -H "Authorization: Bearer $(gcloud auth print-access-token)" \ -H "Content-Type: application/json" \ https://aiplatform.googleapis.com/v1beta1/projects/${PROJECT_ID}/locations/global/endpoints/${ENDPOINT}/chat/completions \ -d '{ "stream": true, "messages": [{ "role": "user", "content": "Write a story about a magic backpack." }] }'
Python
在尝试此示例之前,请按照《Vertex AI 快速入门:使用客户端库》中的 Python 设置说明执行操作。 如需了解详情,请参阅 Vertex AI Python API 参考文档。
如需向 Vertex AI 进行身份验证,请设置应用默认凭据。 如需了解详情,请参阅为本地开发环境设置身份验证。
extra_body
个示例
您可以使用 SDK 或 REST API 传入 extra_body
。
添加thought_tag_marker
{
...,
"extra_body": {
"google": {
...,
"thought_tag_marker": "..."
}
}
}
使用 SDK 添加 extra_body
client.chat.completions.create(
...,
extra_body = {
'extra_body': { 'google': { ... } }
},
)
extra_content
个示例
您可以直接使用 REST API 填充此字段。
包含字符串 content
的 extra_content
{
"messages": [
{ "role": "...", "content": "...", "extra_content": { "google": { ... } } }
]
}
每条消息 extra_content
{
"messages": [
{
"role": "...",
"content": [
{ "type": "...", ..., "extra_content": { "google": { ... } } }
]
}
}
每项工具调用 extra_content
{
"messages": [
{
"role": "...",
"tool_calls": [
{
...,
"extra_content": { "google": { ... } }
}
]
}
]
}
curl
请求示例
您可以直接使用这些 curl
请求,而无需通过 SDK。
多模态请求
Chat Completions API 支持多种多模态输入,包括音频和视频。
使用 image_url
传入图片数据
curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json" \
https://us-central1-aiplatform.googleapis.com/v1/projects/${PROJECT}/locations/us-central1/endpoints/openapi/chat/completions \
-d '{ \
"model": "google/gemini-2.0-flash-001", \
"messages": [{ "role": "user", "content": [ \
{ "type": "text", "text": "Describe this image" }, \
{ "type": "image_url", "image_url": "gs://cloud-samples-data/generative-ai/image/scones.jpg" }] }] }'
使用 input_audio
传入音频数据
curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json" \
https://us-central1-aiplatform.googleapis.com/v1/projects/${PROJECT}/locations/us-central1/endpoints/openapi/chat/completions \
-d '{ \
"model": "google/gemini-2.0-flash-001", \
"messages": [ \
{ "role": "user", \
"content": [ \
{ "type": "text", "text": "Describe this: " }, \
{ "type": "input_audio", "input_audio": { \
"format": "audio/mp3", \
"data": "gs://cloud-samples-data/generative-ai/audio/pixel.mp3" } }] }] }'
结构化输出
您可以使用 response_format
参数获取结构化输出。
使用 SDK 的示例
from pydantic import BaseModel
from openai import OpenAI
client = OpenAI()
class CalendarEvent(BaseModel):
name: str
date: str
participants: list[str]
completion = client.beta.chat.completions.parse(
model="google/gemini-2.5-flash-preview-04-17",
messages=[
{"role": "system", "content": "Extract the event information."},
{"role": "user", "content": "Alice and Bob are going to a science fair on Friday."},
],
response_format=CalendarEvent,
)
print(completion.choices[0].message.parsed)
后续步骤
- 查看使用 OpenAI 兼容语法调用 Inference API 的示例。
- 查看使用 OpenAI 兼容语法调用 Function Calling API 的示例。
- 详细了解 Gemini API。
- 详细了解如何从 Azure OpenAI 迁移到 Gemini API。