A partir de 29 de abril de 2025, os modelos Gemini 1.5 Pro e Gemini 1.5 Flash não estarão disponíveis em projetos que não os usaram antes, incluindo novos projetos. Para mais detalhes, consulte Versões e ciclo de vida do modelo.
Mantenha tudo organizado com as coleções
Salve e categorize o conteúdo com base nas suas preferências.
Dar instruções ao modelo sobre o que fazer é uma maneira eficaz e eficiente de personalizar o comportamento dele. Forneça instruções claras, concisas e diretas, dando o contexto necessário e descrevendo o resultado desejado. As instruções podem ser tão
simples quanto uma lista de instruções detalhadas ou complexas, como mapear a experiência e a mentalidade de um usuário.
Como escrever instruções eficazes
Instruções eficazes aplicam os seguintes princípios:
Informe ao modelo o que fazer.
Escreva com clareza e de forma específica.
Especifique restrições ou requisitos de formatação para a saída.
Exemplo
Por exemplo, suponha que você tenha uma hamburgueria e queira usar um modelo para saber quais itens do cardápio são os mais populares. Você quer que o modelo formate transcrições de pedidos dos clientes em JSON para identificar rapidamente os itens do cardápio. As tabelas a seguir demonstram as diferentes respostas que o modelo fornece quando recebe instruções genéricas e específicas que seguem os princípios de instrução:
Instruções genéricas
Extract the transcript in JSON.
Transcript:
Speaker 1 (Customer): Hi, can I get a cheeseburger and large fries, please?
Speaker 2 (Restaurant employee): Coming right up! Anything else you'd like to add to your order?
Speaker 1: Hmmm, maybe a small orange juice. And could I get the fries with ketchup on the side?
Speaker 2: No problem, one cheeseburger, one large fries with ketchup on the side, and a small
orange juice. That'll be $5.87. Drive through to the next window please.
{
"speakers": [
{
"speaker": "Customer",
"utterances": [
"Hi, can I get a cheeseburger and large fries, please?"
]
},
{
"speaker": "Restaurant Employee",
"utterances": [
"Coming right up! Anything else you'd like to add to your order?"
]
},
{
"speaker": "Customer",
"utterances": [
"Hmm, maybe a small orange juice. And could I get the fries with ketchup on the
side?"
]
},
{
"speaker": "Restaurant Employee",
"utterances": [
"No problem, one cheeseburger, one large fries with ketchup on the side, and a
small orange juice. That'll be $5.87. Drive through to the next window please."
]
}
]
}
No exemplo, a instrução genérica leva a uma resposta com mais campos JSON do que você precisa para identificar os itens do cardápio que os clientes estão pedindo. Melhore as instruções fazendo restrições de saída mais específicas, conforme demonstrado na tabela a seguir:
Instruções específicas
Extract the items from this transcript in JSON and separate drinks from food.
Transcript:
Speaker 1 (Customer): Hi, can I get a cheeseburger and large fries, please?
Speaker 2 (Restaurant employee): Coming right up! Anything else you'd like to add to your order?
Speaker 1: Hmmm, maybe a small orange juice. And could I get the fries with ketchup on the side?
Speaker 2: No problem, one cheeseburger, one large fries with ketchup on the side, and a small
orange juice. That'll be $5.87. Drive through to the next window please.
Ao aplicar os princípios de instrução, este exemplo foi de uma resposta que continha dados demais para um que continha exatamente os dados necessários para esse caso de uso. As instruções que usam os princípios de instrução podem ajudar a orientar o modelo para que gere a resposta mais útil para seu caso de uso.
[[["Fácil de entender","easyToUnderstand","thumb-up"],["Meu problema foi resolvido","solvedMyProblem","thumb-up"],["Outro","otherUp","thumb-up"]],[["Difícil de entender","hardToUnderstand","thumb-down"],["Informações incorretas ou exemplo de código","incorrectInformationOrSampleCode","thumb-down"],["Não contém as informações/amostras de que eu preciso","missingTheInformationSamplesINeed","thumb-down"],["Problema na tradução","translationIssue","thumb-down"],["Outro","otherDown","thumb-down"]],["Última atualização 2025-08-25 UTC."],[],[],null,["# Give clear and specific instructions\n\nGiving the model instructions on what to do is an effective and efficient way to customize model\nbehavior. Be clear, concise, and direct in the instructions, providing the needed context and\noutlining the desired output. Instructions can be as simple as a list of step-by-step instructions\nor as complex as mapping out a user's experience and mindset.\n\nHow to write effective instructions\n-----------------------------------\n\nEffective instructions apply the following principles:\n\n- Tell the model what to do.\n- Be clear and specific.\n- Specify any constraints or formatting requirements for the output.\n\n### Example\n\nFor example, suppose you own a cheeseburger restaurant and you want to use a model to help you\nlearn about which menu items are the most popular. You want the model to format transcripts of\ncustomer orders in JSON so that you can quickly identify menu items. The following tables\ndemonstrate the different responses the model provides when given generic instructions and specific\ninstructions that follow the instruction principles:\n\nIn the example, generic instructions lead to a response with more JSON fields than what you need to identify the menu items customers are ordering. Improve the instructions by making more specific output constraints, as demonstrated in the following table:\n\nBy applying the instruction principles, this example went from a response that contained too\nmuch data to one that contained exactly the data required for this use case. Instructions that use\nthe instruction princples can help you guide the model to deliver the most helpful response for\nyour use case.\n\nWhat's next\n-----------\n\n- Explore more examples of prompts in the [Prompt gallery](/vertex-ai/generative-ai/docs/prompt-gallery)."]]