Usar un agente de Agent Development Kit

Además de las instrucciones generales para usar un agente, en esta página se describen las funciones específicas de AdkApp.

Antes de empezar

En este tutorial se da por hecho que has leído y seguido las instrucciones de los siguientes artículos:

Para consultar una aplicación ADK, primero debes crear una instancia de aplicación ADK o obtener una instancia ya creada.

Para obtener la aplicación del ADK correspondiente a un ID de recurso específico, haz lo siguiente:

SDK de Vertex AI para Python

Ejecuta el siguiente código:

from vertexai import agent_engines

adk_app = agent_engines.get(RESOURCE_ID)

También puedes proporcionar el nombre completo del recurso del agente:

adk_app = agent_engines.get("projects/PROJECT_ID/locations/LOCATION/reasoningEngines/RESOURCE_ID")

Biblioteca de solicitudes de Python

Ejecuta el siguiente código:

from google import auth as google_auth
from google.auth.transport import requests as google_requests
import requests

def get_identity_token():
    credentials, _ = google_auth.default()
    auth_request = google_requests.Request()
    credentials.refresh(auth_request)
    return credentials.token

response = requests.get(
f"https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/reasoningEngines/RESOURCE_ID",
    headers={
        "Content-Type": "application/json; charset=utf-8",
        "Authorization": f"Bearer {get_identity_token()}",
    },
)

API REST

curl \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json" \
https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/reasoningEngines/RESOURCE_ID

Operaciones admitidas

Se admiten las siguientes operaciones para AdkApp:

Para enumerar todas las operaciones admitidas, haz lo siguiente:

SDK de Vertex AI para Python

Ejecuta el siguiente código:

adk_app.operation_schemas()

Biblioteca de solicitudes de Python

Ejecuta el siguiente código:

import json

json.loads(response.content).get("spec").get("classMethods")

API REST

Se representa en spec.class_methods de la respuesta a la solicitud curl.

Gestionar sesiones

AdkApp usa sesiones gestionadas basadas en la nube después de desplegar el agente en Vertex AI Agent Engine. En esta sección se describe cómo usar las sesiones gestionadas.

Crear una sesión

Para crear una sesión de un usuario, sigue estos pasos:

SDK de Vertex AI para Python

session = await adk_app.async_create_session(user_id="USER_ID")

Biblioteca de solicitudes de Python

Ejecuta el siguiente código:

from google import auth as google_auth
from google.auth.transport import requests as google_requests
import requests
import json

def get_identity_token():
  credentials, _ = google_auth.default()
  auth_request = google_requests.Request()
  credentials.refresh(auth_request)
  return credentials.token

response = requests.post(
  f"https://{adk_app.api_client.api_endpoint}/v1/{adk_app.resource_name}:query",
  headers={
    "Content-Type": "application/json; charset=utf-8",
    "Authorization": f"Bearer {get_identity_token()}",
  },
  data=json.dumps({
    "class_method": "async_create_session",
    "input": {"user_id": "USER_ID"},
  }),
)
print(response.content)

API REST

curl \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json" \
https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/reasoningEngines/RESOURCE_ID:query -d '{"class_method": "async_create_session", "input": {"user_id": "USER_ID"},}'

donde USER_ID es un ID definido por el usuario con un límite de 128 caracteres.

Mostrar sesiones

Para enumerar las sesiones de un usuario, sigue estos pasos:

SDK de Vertex AI para Python

await adk_app.async_list_sessions(user_id="USER_ID")

Biblioteca de solicitudes de Python

Ejecuta el siguiente código:

from google import auth as google_auth
from google.auth.transport import requests as google_requests
import requests
import json

def get_identity_token():
  credentials, _ = google_auth.default()
  auth_request = google_requests.Request()
  credentials.refresh(auth_request)
  return credentials.token

response = requests.post(
  f"https://{adk_app.api_client.api_endpoint}/v1/{adk_app.resource_name}:query",
  headers={
    "Content-Type": "application/json; charset=utf-8",
    "Authorization": f"Bearer {get_identity_token()}",
  },
  data=json.dumps({
    "class_method": "async_list_sessions",
    "input": {"user_id": "USER_ID"},
  }),
)
print(response.content)

API REST

curl \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json" \
https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/reasoningEngines/RESOURCE_ID:query -d '{"class_method": "async_list_sessions", "input": {"user_id": "USER_ID"},}'

donde USER_ID es un ID definido por el usuario con un límite de 128 caracteres.

Obtener una sesión

Para obtener una sesión específica, necesita el ID de usuario y el ID de sesión:

SDK de Vertex AI para Python

session = await adk_app.async_get_session(user_id="USER_ID", session_id="SESSION_ID")

Biblioteca de solicitudes de Python

Ejecuta el siguiente código:

from google import auth as google_auth
from google.auth.transport import requests as google_requests
import requests
import json

def get_identity_token():
  credentials, _ = google_auth.default()
  auth_request = google_requests.Request()
  credentials.refresh(auth_request)
  return credentials.token

response = requests.post(
  f"https://{adk_app.api_client.api_endpoint}/v1/{adk_app.resource_name}:query",
  headers={
    "Content-Type": "application/json; charset=utf-8",
    "Authorization": f"Bearer {get_identity_token()}",
  },
  data=json.dumps({
    "class_method": "async_get_session",
    "input": {"user_id": "USER_ID", "session_id": "SESSION_ID"},
  }),
)
print(response.content)

API REST

curl \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json" \
https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/reasoningEngines/RESOURCE_ID:query -d '{"class_method": "async_get_session", "input": {"user_id": "USER_ID", "session_id": "SESSION_ID"},}'

Eliminar una sesión

Para eliminar una sesión, necesita el ID de usuario y el ID de sesión:

SDK de Vertex AI para Python

await adk_app.async_delete_session(user_id="USER_ID", session_id="SESSION_ID")

Biblioteca de solicitudes de Python

Ejecuta el siguiente código:

from google import auth as google_auth
from google.auth.transport import requests as google_requests
import requests
import json

def get_identity_token():
  credentials, _ = google_auth.default()
  auth_request = google_requests.Request()
  credentials.refresh(auth_request)
  return credentials.token

response = requests.post(
  f"https://{adk_app.api_client.api_endpoint}/v1/{adk_app.resource_name}:query",
  headers={
    "Content-Type": "application/json; charset=utf-8",
    "Authorization": f"Bearer {get_identity_token()}",
  },
  data=json.dumps({
    "class_method": "async_delete_session",
    "input": {"user_id": "USER_ID", "session_id": "SESSION_ID"},
  }),
)
print(response.content)

API REST

curl \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json" \
https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/reasoningEngines/RESOURCE_ID:query -d '{"class_method": "async_delete_session", "input": {"user_id": "USER_ID", "session_id": "SESSION_ID"},}'

Enviar una respuesta a una consulta

Para transmitir respuestas de un agente en una sesión:

SDK de Vertex AI para Python

async for event in adk_app.async_stream_query(
    user_id="USER_ID",
    session_id="SESSION_ID",  # Optional
    message="What is the exchange rate from US dollars to SEK today?",
):
  print(event)

Biblioteca de solicitudes de Python

from google import auth as google_auth
from google.auth.transport import requests as google_requests
import requests

def get_identity_token():
    credentials, _ = google_auth.default()
    auth_request = google_requests.Request()
    credentials.refresh(auth_request)
    return credentials.token

requests.post(
    f"https://{adk_app.api_client.api_endpoint}/v1/{adk_app.resource_name}:streamQuery",
    headers={
        "Content-Type": "application/json",
        "Authorization": f"Bearer {get_identity_token()}",
    },
    data=json.dumps({
        "class_method": "async_stream_query",
        "input": {
            "user_id": "USER_ID",
            "session_id": "SESSION_ID",
            "message": "What is the exchange rate from US dollars to SEK today?",
        },
    }),
    stream=True,
)

API REST

curl \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json" \
https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/reasoningEngines/RESOURCE_ID:streamQuery?alt=sse -d '{
  "class_method": "async_stream_query",
  "input": {
    "user_id": "USER_ID",
    "session_id": "SESSION_ID",
    "message": "What is the exchange rate from US dollars to SEK today?",
  }
}'

Siguientes pasos