The accelerator-optimized machine family is designed by Google Cloud to deliver the needed performance and efficiency for GPU accelerated workloads such as artificial intelligence (AI), machine learning (ML), and high performance computing (HPC).
The A3 accelerator-optimized machine series has 208 vCPUs, and up to
1872 GB of memory. Each a3-highgpu-8g
machine type has eight
NVIDIA H100 GPUs attached, which offers 80 GB GPU memory per GPU. These VMs can
get up to 1,000 Gbps of network bandwidth, which makes them ideal for large
transformer-based language models, databases, and high performance computing (HPC).
When working with a3-highgpu-8g
VMs, you can use GPUDirect-TCPX to achieve the
lowest possible latency between applications and the network.
GPUDirect-TCPX is a custom, remote direct memory access (RDMA)
networking stack that increases the network performance of your A3 VMs by
allowing data packet payloads to transfer directly from GPU memory to the
network interface without having to go through the CPU and system memory.
A3 VMs can use GPUDirect-TCPX combined with Google Virtual NIC (gVNIC)
to deliver the highest throughput between VMs in a cluster when compared to the
A2 or G2 accelerator-optimized machine types.
This document shows you how to use set up and test the improved GPU network
performance that is available with GPUDirect-TCPX on a3-highgpu-8g
VMs that use
Container-Optimized OS.
Overview
To test network performance with GPUDirect-TCPX, complete the following steps:
- Set up one or more Virtual Private Cloud (VPC) networks and set the
MTU setting (also known as jumbo frames) to
8244
. - Create your GPU VMs by using the
cos-105-lts
Container-Optimized OS image. - On each VM, install the GPU drivers.
- On each VM, give the network interface cards (NICs) access to the GPU.
- Run an NCCL test.
Set up jumbo frame MTU networks
a3-highgpu-8g
VMs have five physical NICs, to get the best performance
for the physical NICs, you need to create five Virtual Private Cloud networks and set
the MTU to 8244
.
Create management network, subnet, and firewall rule
Complete the following steps to set up the management network:
Create the management network by using the
networks create
command:gcloud compute networks create NETWORK_NAME_PREFIX-mgmt-net \ --project=PROJECT_ID \ --subnet-mode=custom \ --mtu=8244
Create the management subnet by using the
networks subnets create
command:gcloud compute networks subnets create NETWORK_NAME_PREFIX-mgmt-sub \ --project=PROJECT_ID \ --network=NETWORK_NAME_PREFIX-mgmt-net \ --region=REGION \ --range=192.168.0.0/24
Create firewall rules by using the
firewall-rules create
command.Create a firewall rule for the management network.
gcloud compute firewall-rules create NETWORK_NAME_PREFIX-mgmt-internal \ --project=PROJECT_ID \ --network=NETWORK_NAME_PREFIX-mgmt-net \ --action=ALLOW \ --rules=tcp:0-65535,udp:0-65535,icmp \ --source-ranges=192.168.0.0/16
Create the
tcp:22
firewall rule to limit which source IP addresses can connect to your VM by using SSH.gcloud compute firewall-rules create NETWORK_NAME_PREFIX-mgmt-external-ssh \ --project=PROJECT_ID \ --network=NETWORK_NAME_PREFIX-mgmt-net \ --action=ALLOW \ --rules=tcp:22 \ --source-ranges=SSH_SOURCE_IP_RANGE
Create the
icmp
firewall rule that can be used to check for data transmission issues in the network.gcloud compute firewall-rules create NETWORK_NAME_PREFIX-mgmt-external-ping \ --project=PROJECT_ID \ --network=NETWORK_NAME_PREFIX-mgmt-net \ --action=ALLOW \ --rules=icmp \ --source-ranges=0.0.0.0/0
Replace the following:
NETWORK_NAME_PREFIX
: the name prefix to use for the Virtual Private Cloud networks and subnets.PROJECT_ID
: your project ID.REGION
: the region where you want to create the networks.SSH_SOURCE_IP_RANGE
: IP range in CIDR format. This specifies which source IP addresses can connect to your VM by using SSH.
Create data networks, subnets, and firewall rule
Use the following command to create four data networks, each with subnets and firewall rules.
for N in $(seq 1 4); do gcloud compute networks create NETWORK_NAME_PREFIX-data-net-$N \ --project=PROJECT_ID \ --subnet-mode=custom \ --mtu=8244 gcloud compute networks subnets create NETWORK_NAME_PREFIX-data-sub-$N \ --project=PROJECT_ID \ --network=NETWORK_NAME_PREFIX-data-net-$N \ --region=REGION \ --range=192.168.$N.0/24 gcloud compute firewall-rules create NETWORK_NAME_PREFIX-data-internal-$N \ --project=PROJECT_ID \ --network=NETWORK_NAME_PREFIX-data-net-$N \ --action=ALLOW \ --rules=tcp:0-65535,udp:0-65535,icmp \ --source-ranges=192.168.0.0/16 done
For more information about how to create Virtual Private Cloud networks, see Create and verify a jumbo frame MTU network.
Create your GPU VMs
To test network performance with GPUDirect-TCPX, you need to create at least two A3 VMs.
Create each VM by using the
cos-105-lts
Container-Optimized OS image and specifying the virtual MTU networks that were created in the previous step.The VMs must also use the Google Virtual NIC (gVNIC) network interface. For A3 VMs, gVNIC version 1.4.0rc3 or later is required. This driver version is available on the Container-Optimized OS.
The first virtual NIC is used as the primary NIC for general networking and storage, the other four virtual NICs are NUMA aligned with two of the eight GPUs on the same PCIe switch.
gcloud compute instances create VM_NAME \ --project=PROJECT_ID \ --zone=ZONE \ --machine-type=a3-highgpu-8g \ --maintenance-policy=TERMINATE --restart-on-failure \ --image-family=cos-105-lts \ --image-project=cos-cloud \ --boot-disk-size=${BOOT_DISK_SZ:-50} \ --metadata=cos-update-strategy=update_disabled \ --scopes=https://www.googleapis.com/auth/cloud-platform \ --network-interface=nic-type=GVNIC,network=NETWORK_NAME_PREFIX-mgmt-net,subnet=NETWORK_NAME_PREFIX-mgmt-sub \ --network-interface=nic-type=GVNIC,network=NETWORK_NAME_PREFIX-data-net-1,subnet=NETWORK_NAME_PREFIX-data-sub-1,no-address \ --network-interface=nic-type=GVNIC,network=NETWORK_NAME_PREFIX-data-net-2,subnet=NETWORK_NAME_PREFIX-data-sub-2,no-address \ --network-interface=nic-type=GVNIC,network=NETWORK_NAME_PREFIX-data-net-3,subnet=NETWORK_NAME_PREFIX-data-sub-3,no-address \ --network-interface=nic-type=GVNIC,network=NETWORK_NAME_PREFIX-data-net-4,subnet=NETWORK_NAME_PREFIX-data-sub-4,no-address
Replace the following:
VM_NAME
: the name of your VM.PROJECT_ID
: your project ID.ZONE
: the zone for the VM.NETWORK_NAME_PREFIX
: the name prefix to use for the Virtual Private Cloud networks and subnets.
Install GPU drivers
On each A3 VM, complete the following steps.
Install the NVIDIA GPU drivers by running the following command:
sudo cos-extensions install gpu -- --version=latest
Re-mount the path by running the following command:
sudo mount --bind /var/lib/nvidia /var/lib/nvidia sudo mount -o remount,exec /var/lib/nvidia
Give the NICs access to the GPUs
On each A3 VM, give the NICs access to the GPUs by completing the following steps:
Configure the registry.
If you are using Container Registry, run the following command:
docker-credential-gcr configure-docker
If you are using Artifact Registry, run the following command:
docker-credential-gcr configure-docker --registries us-docker.pkg.dev
Configure the receive data path manager. A management service, GPUDirect-TCPX Receive Data Path Manager, needs to run alongside the applications that use GPUDirect-TCPX. To start the service on each Container-Optimized OS VM, run the following command:
docker run --pull=always --rm \ --name receive-datapath-manager \ --detach \ --privileged \ --cap-add=NET_ADMIN --network=host \ --volume /var/lib/nvidia/lib64:/usr/local/nvidia/lib64 \ --device /dev/nvidia0:/dev/nvidia0 \ --device /dev/nvidia1:/dev/nvidia1 \ --device /dev/nvidia2:/dev/nvidia2 \ --device /dev/nvidia3:/dev/nvidia3 \ --device /dev/nvidia4:/dev/nvidia4 \ --device /dev/nvidia5:/dev/nvidia5 \ --device /dev/nvidia6:/dev/nvidia6 \ --device /dev/nvidia7:/dev/nvidia7 \ --device /dev/nvidia-uvm:/dev/nvidia-uvm \ --device /dev/nvidiactl:/dev/nvidiactl \ --env LD_LIBRARY_PATH=/usr/local/nvidia/lib64 \ --volume /run/tcpx:/run/tcpx \ --entrypoint /tcpgpudmarxd/build/app/tcpgpudmarxd \ us-docker.pkg.dev/gce-ai-infra/gpudirect-tcpx/tcpgpudmarxd \ --gpu_nic_preset a3vm --gpu_shmem_type fd --uds_path "/run/tcpx" --setup_param "--verbose 128 2 0"
Verify the
receive-datapath-manager
container started.docker container logs --follow receive-datapath-manager
The output should resemble the following:
I0000 00:00:1687813309.406064 1 rx_rule_manager.cc:174] Rx Rule Manager server(s) started...
To stop viewing the logs, press
ctrl-c
.Install IP table rules.
sudo iptables -I INPUT -p tcp -m tcp -j ACCEPT
Configure the NVIDIA Collective Communications Library (NCCL) and GPUDirect-TCPX plugin.
A specific NCCL library version and GPUDirect-TCPX plugin binary combination are required to use NCCL with GPUDirect-TCPX support. Google Cloud has provided packages that meet this requirement.
To install the Google Cloud package, run the following command:
docker run --rm -v /var/lib:/var/lib us-docker.pkg.dev/gce-ai-infra/gpudirect-tcpx/nccl-plugin-gpudirecttcpx install --install-nccl sudo mount --bind /var/lib/tcpx /var/lib/tcpx sudo mount -o remount,exec /var/lib/tcpx
If this command is successful, the
libnccl-net.so
andlibnccl.so
files are placed in the/var/lib/tcpx/lib64
directory.
Run tests
On each A3 VM, run an NCCL test by completing the following steps:
Start the container.
#!/bin/bash function run_tcpx_container() { docker run \ -u 0 --network=host \ --cap-add=IPC_LOCK \ --userns=host \ --volume /run/tcpx:/tmp \ --volume /var/lib/nvidia/lib64:/usr/local/nvidia/lib64 \ --volume /var/lib/tcpx/lib64:/usr/local/tcpx/lib64 \ --shm-size=1g --ulimit memlock=-1 --ulimit stack=67108864 \ --device /dev/nvidia0:/dev/nvidia0 \ --device /dev/nvidia1:/dev/nvidia1 \ --device /dev/nvidia2:/dev/nvidia2 \ --device /dev/nvidia3:/dev/nvidia3 \ --device /dev/nvidia4:/dev/nvidia4 \ --device /dev/nvidia5:/dev/nvidia5 \ --device /dev/nvidia6:/dev/nvidia6 \ --device /dev/nvidia7:/dev/nvidia7 \ --device /dev/nvidia-uvm:/dev/nvidia-uvm \ --device /dev/nvidiactl:/dev/nvidiactl \ --env LD_LIBRARY_PATH=/usr/local/nvidia/lib64:/usr/local/tcpx/lib64 \ "$@" }
The preceding command completes the following:
- Mounts NVIDIA devices from
/dev
into the container - Sets network namespace of the container to the host
- Sets user namespace of the container to host
- Adds
CAP_IPC_LOCK
to the capabilities of the container - Mounts
/tmp
of the host to/tmp
of the container - Mounts the installation path of NCCL and GPUDirect-TCPX NCCL plugin into
the container and add the mounted path to
LD_LIBRARY_PATH
- Mounts NVIDIA devices from
After you start the container, applications that use NCCL can run from inside the container. For example, to run the
run-allgather
test, complete the following steps:On each A3 VM, run the following:
$ run_tcpx_container -it --rm us-docker.pkg.dev/gce-ai-infra/gpudirect-tcpx/nccl-plugin-gpudirecttcpx shell
On one VM, run the following commands:
Set up connection between the VMs. Replace
VM-0
andVM-1
with the names of each VM./scripts/init_ssh.sh VM-0 VM-1 pushd /scripts && /scripts/gen_hostfiles.sh VM-0 VM-1; popd
This creates a
/scripts/hostfiles2
directory on each VM.Run the script.
/scripts/run-allgather.sh 8 eth1,eth2,eth3,eth4 1M 512M 2
The
run-allgather
script takes about two minutes to run. At the end of the logs, you'll see theall-gather
results.If you see the following line in your NCCL logs, this verifies that GPUDirect-TCPX is initialized successfully.
NCCL INFO NET/GPUDirectTCPX ver. 3.1.1.