Stay organized with collections
Save and categorize content based on your preferences.
VECTOR_INDEX_OPTIONS view
The INFORMATION_SCHEMA.VECTOR_INDEX_OPTIONS view contains one row for each vector index option in a dataset.
Required permissions
To see vector index metadata, you need the
bigquery.tables.get or bigquery.tables.list Identity and Access Management (IAM)
permission on the table with the index. Each of the following predefined
IAM roles includes at least one of these permissions:
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Hard to understand","hardToUnderstand","thumb-down"],["Incorrect information or sample code","incorrectInformationOrSampleCode","thumb-down"],["Missing the information/samples I need","missingTheInformationSamplesINeed","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2025-08-29 UTC."],[[["\u003cp\u003eThe \u003ccode\u003eINFORMATION_SCHEMA.VECTOR_INDEX_OPTIONS\u003c/code\u003e view provides metadata for each vector-indexed column within a dataset's tables, with each row corresponding to a single vector index.\u003c/p\u003e\n"],["\u003cp\u003eAccessing this vector index metadata requires \u003ccode\u003ebigquery.tables.get\u003c/code\u003e or \u003ccode\u003ebigquery.tables.list\u003c/code\u003e IAM permissions on the table, permissions that are included in predefined roles such as \u003ccode\u003eroles/bigquery.admin\u003c/code\u003e, \u003ccode\u003eroles/bigquery.dataEditor\u003c/code\u003e, and others.\u003c/p\u003e\n"],["\u003cp\u003eQueries against the \u003ccode\u003eINFORMATION_SCHEMA.VECTOR_INDEX_OPTIONS\u003c/code\u003e view need a dataset qualifier and must be executed in the same region as the \u003ccode\u003eINFORMATION_SCHEMA\u003c/code\u003e view.\u003c/p\u003e\n"],["\u003cp\u003eThe view's schema includes details like \u003ccode\u003eindex_catalog\u003c/code\u003e, \u003ccode\u003eindex_schema\u003c/code\u003e, \u003ccode\u003etable_name\u003c/code\u003e, \u003ccode\u003eindex_name\u003c/code\u003e, \u003ccode\u003eoption_name\u003c/code\u003e, \u003ccode\u003eoption_type\u003c/code\u003e, and \u003ccode\u003eoption_value\u003c/code\u003e, providing a structured breakdown of vector index configurations.\u003c/p\u003e\n"],["\u003cp\u003eAn example query is given to show how to obtain information on vector index options, using columns table_name, index_name, option_name, option_type, and option_value, from the view.\u003c/p\u003e\n"]]],[],null,["# VECTOR_INDEX_OPTIONS view\n=========================\n\nThe `INFORMATION_SCHEMA.VECTOR_INDEX_OPTIONS` view contains one row for each vector index option in a dataset.\n\nRequired permissions\n--------------------\n\nTo see [vector index](/bigquery/docs/vector-index) metadata, you need the\n`bigquery.tables.get` or `bigquery.tables.list` Identity and Access Management (IAM)\npermission on the table with the index. Each of the following predefined\nIAM roles includes at least one of these permissions:\n\n- `roles/bigquery.admin`\n- `roles/bigquery.dataEditor`\n- `roles/bigquery.dataOwner`\n- `roles/bigquery.dataViewer`\n- `roles/bigquery.metadataViewer`\n- `roles/bigquery.user`\n\nFor more information about BigQuery permissions, see\n[Access control with IAM](/bigquery/docs/access-control).\n\nSchema\n------\n\nWhen you query the `INFORMATION_SCHEMA.VECTOR_INDEX_OPTIONS` view, the query results contain one row for each vector index option in a dataset\n\n\u003cbr /\u003e\n\nThe `INFORMATION_SCHEMA.VECTOR_INDEX_OPTIONS` view has the following schema:\n\nScope and syntax\n----------------\n\nQueries against this view must have a [dataset qualifier](/bigquery/docs/information-schema-intro#syntax). The\nfollowing table explains the region scope for this view:\n\n\u003cbr /\u003e\n\nReplace the following:\n\n- Optional: \u003cvar translate=\"no\"\u003ePROJECT_ID\u003c/var\u003e: the ID of your Google Cloud project. If not specified, the default project is used.\n- \u003cvar translate=\"no\"\u003eDATASET_ID\u003c/var\u003e: the ID of your dataset. For more information, see [Dataset qualifier](/bigquery/docs/information-schema-intro#dataset_qualifier).\n\n \u003cbr /\u003e\n\n \u003cbr /\u003e\n\n | **Note:** You must use [a region qualifier](/bigquery/docs/information-schema-intro#region_qualifier) to query `INFORMATION_SCHEMA` views. The location of the query execution must match the region of the `INFORMATION_SCHEMA` view.\n\n\u003cbr /\u003e\n\n**Example** \n\n -- Returns metadata for vector indexes in a single dataset.\n SELECT * FROM myDataset.INFORMATION_SCHEMA.VECTOR_INDEX_OPTIONS;\n\nExamples\n--------\n\nThe following query extracts information on vector index options: \n\n```googlesql\nSELECT table_name, index_name, option_name, option_type, option_value\nFROM my_project.dataset.INFORMATION_SCHEMA.VECTOR_INDEX_OPTIONS;\n```\n\nThe result is similar to the following: \n\n```\n+------------+------------+------------------+------------------+-------------------------------------------------------------------+\n| table_name | index_name | option_name | option_type | option_value |\n+------------+------------+------------------+------------------+-------------------------------------------------------------------+\n| table1 | indexa | index_type | STRING | IVF |\n| table1 | indexa | distance_type | STRING | EUCLIDEAN |\n| table1 | indexa | ivf_options | STRING | {\"num_lists\": 100} |\n| table2 | indexb | index_type | STRING | IVF |\n| table2 | indexb | distance_type | STRING | COSINE |\n| table2 | indexb | ivf_options | STRING | {\"num_lists\": 500} |\n| table3 | indexc | index_type | STRING | TREE_AH |\n| table3 | indexc | distance_type | STRING | DOT_PRODUCT |\n| table3 | indexc | tree_ah_options | STRING | {\"leaf_node_embedding_count\": 1000, \"normalization_type\": \"NONE\"} |\n+------------+------------+------------------+------------------+-------------------------------------------------------------------+\n```"]]