Mantenha tudo organizado com as coleções
Salve e categorize o conteúdo com base nas suas preferências.
Nesta página, descrevemos como usar o Cloud Monitoring e os registros de auditoria do Spanner para monitorar e analisar o uso do Spanner Data Boost.
O Cloud Monitoring permite rastrear o uso total ao longo do tempo e detalhar esse uso por usuário. Os registros de auditoria do Spanner permitem uma análise de uso mais flexível, incluindo métricas por usuário ou por ID de job do BigQuery.
Usar o Cloud Monitoring para acompanhar o uso do Data Boost
Siga estas etapas para acompanhar o uso geral do Data Boost:
Se o Metrics Explorer aparecer no menu de navegação, selecione-o.
Caso contrário, clique em Recursos e selecione Metrics Explorer.
Na parte de cima da página, selecione um intervalo de tempo.
Na lista suspensa Métrica, no campo Filtrar por nome do recurso ou da métrica, digite spanner e pressione Enter para restringir a pesquisa.
Na lista Métrica, selecione Instância do Cloud Spanner > Instância >
Segundo da unidade de processamento e clique em Aplicar.
Isso cria um gráfico de linhas do uso agregado do Data Boost em todas as instâncias do Spanner.
Para conferir o uso de uma instância específica, siga estas etapas:
Use o campo Filtro para adicionar filtros, como o ID da instância.
Clique em + para adicionar outros atributos.
Para conferir um detalhamento do uso por todas as instâncias, siga estas etapas:
Para limpar os filtros, clique no ícone X ao lado dos campos de filtro.
Na lista suspensa do operador Agregação, selecione Soma e, em seguida, selecione por instance_id.
Para detalhar o uso por principal, no menu suspenso do operador Agregação, selecione Soma e, em seguida, selecione por credential_id.
Usar registros de auditoria para analisar o uso do Data Boost
Os registros de auditoria do Spanner permitem uma análise mais flexível do uso do Data Boost. Além da capacidade de detalhar o uso ao longo do tempo por instância ou principal, como no Cloud Monitoring, os registros de auditoria do Spanner, se ativados e disponíveis, permitem detalhar o uso ao longo do tempo por banco de dados ou ID do job do BigQuery.
Ativar registros de auditoria de uso do Data Boost
É necessário ativar os registros de auditoria de acesso a dados do Spanner antes de coletar dados de uso do Data Boost. Para fazer isso, siga estas etapas:
No menu de navegação, clique em Análise de registros.
Para mostrar o uso por usuário e banco de dados nos últimos sete dias, execute a seguinte consulta. Para mudar o período em que o uso é mostrado, modifique a expressão timestamp na cláusula WHERE.
No menu de navegação, clique em Análise de registros.
Execute a seguinte consulta:
SELECTSUM(CAST(JSON_VALUE(labels.data_boost_usage)ASINT64))ASusage,REGEXP_EXTRACT(proto_payload.audit_log.resource_name,'projects/[^/]+/instances/[^/]+/databases/[^/]+')ASdatabase,proto_payload.audit_log.authentication_info.principal_emailASprincipal_email,IFNULL(JSON_VALUE(labels.data_boost_workload_id),'not from BQ')ASjob_idFROM`PROJECT_NAME.global._Default._AllLogs`WHEREtimestamp > TIMESTAMP_SUB(CURRENT_TIMESTAMP(),INTERVAL7DAY)ANDresource.type='spanner_instance'ANDoperation.lastISNULLANDJSON_VALUE(labels.data_boost_usage)!=''GROUPBYdatabase,principal_email,job_id;
Substitua PROJECT_NAME pelo nome do projeto.
O exemplo a seguir mostra o uso por ID do job do BigQuery.
Ver o uso por texto SQL do BigQuery
Para conferir o uso do Data Boost em vários jobs do BigQuery agregados pelo texto SQL desses jobs, siga estas etapas:
Acesse o Explorador de registros no console Google Cloud .
[[["Fácil de entender","easyToUnderstand","thumb-up"],["Meu problema foi resolvido","solvedMyProblem","thumb-up"],["Outro","otherUp","thumb-up"]],[["Difícil de entender","hardToUnderstand","thumb-down"],["Informações incorretas ou exemplo de código","incorrectInformationOrSampleCode","thumb-down"],["Não contém as informações/amostras de que eu preciso","missingTheInformationSamplesINeed","thumb-down"],["Problema na tradução","translationIssue","thumb-down"],["Outro","otherDown","thumb-down"]],["Última atualização 2025-09-05 UTC."],[],[],null,["# Monitor Data Boost usage\n\n\u003cbr /\u003e\n\nThis page describes how to use Cloud Monitoring and Spanner audit\nlogs to monitor and analyze Spanner Data Boost usage.\n\nCloud Monitoring provides the ability to track total usage over time and to\nbreak down that usage by user. Spanner audit logs allow more\nflexible usage analysis, including providing metrics by user or by\nBigQuery job ID.\n\nUse Cloud Monitoring to track Data Boost usage\n----------------------------------------------\n\nFollow these steps to track overall Data Boost usage:\n\n1. In the Google Cloud console, go to **Monitoring** . \n [Go to Monitoring](https://console.cloud.google.com/monitoring)\n2. If **Metrics Explorer** is shown in the navigation menu, select it. Otherwise, click **Resources** , and then select **Metrics Explorer**.\n3. At the top of the page, select a time interval.\n4. In the **Metric** drop-down list, in the **Filter by resource or metric\n name** field, enter `spanner` and press `Enter` to narrow the search.\n5. In the **Metric** list, select **Cloud Spanner Instance \\\u003e Instance \\\u003e\n Processing unit second** , and then click **Apply**.\n\n This creates a line chart of aggregate Data Boost usage across\n all Spanner instances.\n6. To view usage for a particular instance, follow these steps:\n\n 1. Use the **Filter** field to add filters, such as the instance ID.\n 2. Click **+** to add other attributes.\n7. To view a breakdown of usage by all instances, follow these steps:\n\n 1. Clear any filters by clicking the **X** icon next to the filter fields.\n 2. In the **Aggregation** operator drop-down list, select **Sum** , and then select by **instance_id**.\n8. To break down usage by principal, in the **Aggregation** operator drop-down,\n select **Sum** , and then select by **credential_id**.\n\nUse audit logs to analyze Data Boost usage\n------------------------------------------\n\nSpanner audit logs allow more flexible analysis of\nData Boost usage. In addition to the ability to break down usage\nover time by instance or principal as with Cloud Monitoring,\nSpanner audit logs, if enabled and available, allow breaking down\nusage over time by database or BigQuery job ID.\n\nEnabling audit logs can incur extra charges. For information about\nLogging pricing, see\n[Google Cloud Observability pricing: Cloud Logging](https://cloud.google.com/stackdriver/pricing#logging-costs).\n\n### Enable Data Boost usage audit logs\n\nYou must enable data access audit logs for Spanner before you can\ncollect usage data for Data Boost. To do so, follow these steps:\n\n1. Follow the instructions in [Configure Data Access audit logs with the Google Cloud console](/logging/docs/audit/configure-data-access#config-console).\n2. Enable the **Data Read** log type for the **Spanner API** service.\n3. To obtain Data Boost usage by BigQuery job SQL text, ensure that that the audit logs for BigQuery are enabled as well.\n\n### View usage by principal\n\nTo query the audit logs to view Data Boost usage by user, follow\nthese steps:\n\n1. Go to the Logs Explorer in the Google Cloud console.\n\n [Go to Logs Explorer](https://console.cloud.google.com/logs)\n2. In the navigation menu, click **Log Analytics**.\n\n3. To show usage by user and database over the past 7 days, run the following\n query. To change the timespan for which usage is shown, modify the\n `timestamp` expression in the `WHERE` clause.\n\n SELECT\n SUM(CAST(JSON_VALUE(labels.data_boost_usage) AS INT64)) AS usage,\n REGEXP_EXTRACT(\n proto_payload.audit_log.resource_name,\n 'projects/[^/]+/instances/[^/]+/databases/[^/]+') AS database,\n proto_payload.audit_log.authentication_info.principal_email AS principal_email\n FROM `\u003cvar translate=\"no\"\u003e\u003cspan class=\"devsite-syntax-n\"\u003ePROJECT_NAME\u003c/span\u003e\u003c/var\u003e.global._Default._AllLogs`\n WHERE\n timestamp \u003e TIMESTAMP_SUB(CURRENT_TIMESTAMP(), INTERVAL 7 DAY)\n AND resource.type = 'spanner_instance' AND operation.last IS NULL\n AND JSON_VALUE(labels.data_boost_usage) != ''\n GROUP BY database, principal_email;\n\n Replace \u003cvar translate=\"no\"\u003ePROJECT_NAME\u003c/var\u003e with your project name.\n\nThe following example shows usage in processing units for 4 principals.\n\n### View usage by BigQuery job ID\n\nTo query the audit logs to view Data Boost usage broken down by\ndatabase, user, and BigQuery job ID, follow these steps:\n\n1. Go to the Logs Explorer in the Google Cloud console.\n\n [Go to Logs Explorer](https://console.cloud.google.com/logs)\n2. In the navigation menu, click **Log Analytics**.\n\n3. Run the following query:\n\n SELECT\n SUM(CAST(JSON_VALUE(labels.data_boost_usage) AS INT64)) AS usage,\n REGEXP_EXTRACT(\n proto_payload.audit_log.resource_name,\n 'projects/[^/]+/instances/[^/]+/databases/[^/]+') AS database,\n proto_payload.audit_log.authentication_info.principal_email AS principal_email,\n IFNULL(JSON_VALUE(labels.data_boost_workload_id), 'not from BQ') AS job_id\n FROM `\u003cvar translate=\"no\"\u003e\u003cspan class=\"devsite-syntax-n\"\u003ePROJECT_NAME\u003c/span\u003e\u003c/var\u003e.global._Default._AllLogs`\n WHERE\n timestamp \u003e TIMESTAMP_SUB(CURRENT_TIMESTAMP(), INTERVAL 7 DAY)\n AND resource.type = 'spanner_instance' AND operation.last IS NULL\n AND JSON_VALUE(labels.data_boost_usage) != ''\n GROUP BY database, principal_email, job_id;\n\n Replace \u003cvar translate=\"no\"\u003ePROJECT_NAME\u003c/var\u003e with your project name.\n\nThe following example shows usage by BigQuery job ID.\n\n### View usage by BigQuery SQL text\n\nTo view Data Boost usage for multiple BigQuery jobs\naggregated by the SQL text of those jobs, follow these steps:\n\n1. Go to the Logs Explorer in the Google Cloud console.\n\n [Go to Logs Explorer](https://console.cloud.google.com/logs)\n2. In the navigation menu, click **Log Analytics**.\n\n3. Run the following query:\n\n SELECT\n SUM(\n CAST(\n JSON_VALUE(db.labels.data_boost_usage)\n AS INT64)) AS usage,\n JSON_VALUE(\n bq.proto_payload.audit_log.metadata.jobInsertion.job.jobConfig.queryConfig.query)\n AS bq_query\n FROM\n `\u003cvar translate=\"no\"\u003e\u003cspan class=\"devsite-syntax-n\"\u003ePROJECT_NAME\u003c/span\u003e\u003c/var\u003e.global._Default._AllLogs` db,\n `\u003cvar translate=\"no\"\u003e\u003cspan class=\"devsite-syntax-n\"\u003ePROJECT_NAME\u003c/span\u003e\u003c/var\u003e.global._Default._AllLogs` bq\n WHERE\n db.timestamp \u003e TIMESTAMP_SUB(\n CURRENT_TIMESTAMP(), INTERVAL 7 DAY)\n AND db.resource.type = 'spanner_instance'\n AND JSON_VALUE(db.labels.data_boost_usage) != ''\n AND db.operation.last IS NULL\n AND bq.timestamp \u003e TIMESTAMP_SUB(\n CURRENT_TIMESTAMP(), INTERVAL 7 DAY)\n AND bq.proto_payload.audit_log.method_name\n = 'google.cloud.bigquery.v2.JobService.InsertJob'\n AND bq.resource.type = 'bigquery_project'\n AND JSON_VALUE(\n bq.proto_payload.audit_log.metadata.jobInsertion.job.jobConfig.queryConfig.query)\n IS NOT NULL\n AND JSON_VALUE(db.labels.data_boost_workload_id)\n = REGEXP_EXTRACT(bq.proto_payload.audit_log.resource_name, '[^/]*$')\n GROUP BY bq_query\n ORDER BY usage DESC\n\n Replace \u003cvar translate=\"no\"\u003ePROJECT_NAME\u003c/var\u003e with your project name.\n\nThe following example shows Data Boost usage by SQL text.\n\nCreate a Data Boost alert\n-------------------------\n\nTo create an alert that is issued when Data Boost usage exceeds\na predefined threshold, see\n[Set an alert for Data Boost usage](/spanner/docs/databoost/databoost-quotas#databoost-alert).\n\nWhat's next\n-----------\n\n- Learn about Data Boost in [Data Boost overview](/spanner/docs/databoost/databoost-overview)."]]