OpenTelemetry サイドカーを使用して OTLP 指標を書き込む


このチュートリアルでは、OpenTelemetry サイドカーを使用して、カスタム OTLP 指標Google Cloud Managed Service for Prometheus に報告する Cloud Run サービスの作成、デプロイ、呼び出しを行う方法について説明します。

Prometheus 指標を報告する Cloud Run サービスがある場合は、代わりに Cloud Run の Prometheus サイドカーを使用します。

目標

  • OpenTelemetry サイドカーを使用して、Cloud Run にサービスを作成、ビルド、デプロイする。
  • カスタム指標を生成し、Google Cloud Managed Service for Prometheus に報告する。

費用

このドキュメントでは、Google Cloud の次の課金対象のコンポーネントを使用します。

料金計算ツールを使うと、予想使用量に基づいて費用の見積もりを生成できます。 新しい Google Cloud ユーザーは無料トライアルをご利用いただける場合があります。

始める前に

  1. Sign in to your Google Cloud account. If you're new to Google Cloud, create an account to evaluate how our products perform in real-world scenarios. New customers also get $300 in free credits to run, test, and deploy workloads.
  2. In the Google Cloud console, on the project selector page, select or create a Google Cloud project.

    Go to project selector

  3. Make sure that billing is enabled for your Google Cloud project.

  4. In the Google Cloud console, on the project selector page, select or create a Google Cloud project.

    Go to project selector

  5. Make sure that billing is enabled for your Google Cloud project.

  6. Enable the Cloud Run, Cloud Monitoring, Artifact Registry, and Cloud Build APIs.

    Enable the APIs

  7. gcloud CLI をインストールして初期化します
  8. gcloud components update で Google Cloud CLI を更新します。

必要なロール

チュートリアルを完了するために必要な権限を取得するには、プロジェクトに対して次の IAM ロールを付与するよう管理者に依頼してください。

ロールの付与については、プロジェクト、フォルダ、組織へのアクセスを管理するをご覧ください。

必要な権限は、カスタムロールや他の事前定義ロールから取得することもできます。

また、Cloud Run サービス ID にはモニタリング指標の書き込みroles/monitoring.metricWriter)ロールが必要です。Compute Engine のデフォルトのサービス アカウントには、デフォルトでこのロールが付与されていますが、権限を変更したり、別のサービス アカウントを使用している場合は、このロールの追加が必要になる可能性があります。

gcloud のデフォルトを設定する

Cloud Run サービスを gcloud のデフォルトに構成するには:

  1. デフォルト プロジェクトを設定します。

    gcloud config set project PROJECT_ID

    PROJECT_ID は、このチュートリアルで作成したプロジェクトの名前に置き換えます。

  2. 選択したリージョン向けに gcloud を構成します。

    gcloud config set run/region REGION

    REGION は、任意のサポートされている Cloud Run のリージョンに置き換えます。

Cloud Run のロケーション

Cloud Run はリージョナルです。つまり、Cloud Run サービスを実行するインフラストラクチャは特定のリージョンに配置され、そのリージョン内のすべてのゾーンで冗長的に利用できるように Google によって管理されます。

レイテンシ、可用性、耐久性の要件を満たしていることが、Cloud Run サービスを実行するリージョンを選択する際の主な判断材料になります。一般的には、ユーザーに最も近いリージョンを選択できますが、Cloud Run サービスで使用されている他の Google Cloud サービスのロケーションも考慮する必要があります。使用する Google Cloud サービスが複数のロケーションにまたがっていると、サービスの料金だけでなくレイテンシにも影響します。

Cloud Run は、次のリージョンで利用できます。

ティア 1 料金を適用

  • asia-east1(台湾)
  • asia-northeast1(東京)
  • asia-northeast2(大阪)
  • asia-south1(ムンバイ、インド)
  • europe-north1(フィンランド) リーフアイコン 低 CO2
  • europe-southwest1(マドリッド) リーフアイコン 低 CO2
  • europe-west1(ベルギー) リーフアイコン 低 CO2
  • europe-west4(オランダ) リーフアイコン 低 CO2
  • europe-west8(ミラノ)
  • europe-west9(パリ) リーフアイコン 低 CO2
  • me-west1(テルアビブ)
  • us-central1(アイオワ) リーフアイコン 低 CO2
  • us-east1(サウスカロライナ)
  • us-east4(北バージニア)
  • us-east5(コロンバス)
  • us-south1(ダラス) リーフアイコン 低 CO2
  • us-west1(オレゴン) リーフアイコン 低 CO2

ティア 2 料金を適用

  • africa-south1(ヨハネスブルグ)
  • asia-east2(香港)
  • asia-northeast3(ソウル、韓国)
  • asia-southeast1(シンガポール)
  • asia-southeast2 (ジャカルタ)
  • asia-south2(デリー、インド)
  • australia-southeast1(シドニー)
  • australia-southeast2(メルボルン)
  • europe-central2(ワルシャワ、ポーランド)
  • europe-west10(ベルリン) リーフアイコン 低 CO2
  • europe-west12(トリノ)
  • europe-west2(ロンドン、イギリス) リーフアイコン 低 CO2
  • europe-west3(フランクフルト、ドイツ) リーフアイコン 低 CO2
  • europe-west6(チューリッヒ、スイス) リーフアイコン 低 CO2
  • me-central1(ドーハ)
  • me-central2(ダンマーム)
  • northamerica-northeast1(モントリオール) リーフアイコン 低 CO2
  • northamerica-northeast2(トロント) リーフアイコン 低 CO2
  • southamerica-east1(サンパウロ、ブラジル) リーフアイコン 低 CO2
  • southamerica-west1(サンティアゴ、チリ) リーフアイコン 低 CO2
  • us-west2(ロサンゼルス)
  • us-west3(ソルトレイクシティ)
  • us-west4(ラスベガス)

Cloud Run サービスをすでに作成している場合は、Google Cloud コンソールの Cloud Run ダッシュボードにリージョンが表示されます。

Artifact Registry イメージ リポジトリを作成する

サンプル サービス イメージをホストする Artifact Registry Docker リポジトリを作成します。

gcloud artifacts repositories create run-otel \
    --repository-format=docker \
    --location=REGION \
    --project=PROJECT_ID

以下を置き換えます。

  • PROJECT_ID は、このチュートリアルで作成したプロジェクトの名前に置き換えます。
  • REGION は、サポートされている任意の Cloud Run のリージョンに置き換えます。

コードサンプルを取得する

使用するコードサンプルを取得するには:

  1. ローカルマシンにサンプルアプリのリポジトリのクローンを作成します。

    Go

    git clone https://github.com/GoogleCloudPlatform/golang-samples.git

    または、zip 形式のサンプルをダウンロードし、ファイルを抽出してもかまいません。

  2. Cloud Run のサンプルコードが含まれているディレクトリに移動します。

    Go

    cd golang-samples/run/custom-metrics/

コードを確認する

このチュートリアルのコードは、次のものから構成されています。

  • 受信リクエストを処理し、sidecar_sample_counter という名前の指標を生成するサーバー。
package main

import (
	"context"
	"fmt"
	"log"
	"net/http"
	"os"

	"go.opentelemetry.io/otel/exporters/otlp/otlpmetric/otlpmetricgrpc"
	"go.opentelemetry.io/otel/metric"
	sdkmetric "go.opentelemetry.io/otel/sdk/metric"
	"go.opentelemetry.io/otel/sdk/resource"
	semconv "go.opentelemetry.io/otel/semconv/v1.24.0"
)

var counter metric.Int64Counter

func main() {
	ctx := context.Background()
	shutdown := setupCounter(ctx)
	defer shutdown(ctx)

	port := os.Getenv("PORT")
	if port == "" {
		port = "8080"
		log.Printf("defaulting to port %s", port)
	}

	http.HandleFunc("/", handler)
	log.Fatal(http.ListenAndServe(":"+port, nil))
}

func handler(w http.ResponseWriter, r *http.Request) {
	counter.Add(context.Background(), 100)
	fmt.Fprintln(w, "Incremented sidecar_sample_counter metric!")
}

func setupCounter(ctx context.Context) func(context.Context) error {
	serviceName := os.Getenv("K_SERVICE")
	if serviceName == "" {
		serviceName = "sample-cloud-run-app"
	}
	r, err := resource.Merge(
		resource.Default(),
		resource.NewWithAttributes(
			semconv.SchemaURL,
			semconv.ServiceName(serviceName),
		),
	)
	if err != nil {
		log.Fatalf("Error creating resource: %v", err)
	}

	exporter, err := otlpmetricgrpc.New(ctx,
		otlpmetricgrpc.WithInsecure(),
	)
	if err != nil {
		log.Fatalf("Error creating exporter: %s", err)
	}
	provider := sdkmetric.NewMeterProvider(
		sdkmetric.WithReader(sdkmetric.NewPeriodicReader(exporter)),
		sdkmetric.WithResource(r),
	)

	meter := provider.Meter("example.com/metrics")
	counter, err = meter.Int64Counter("sidecar-sample-counter")
	if err != nil {
		log.Fatalf("Error creating counter: %s", err)
	}
	return provider.Shutdown
}
  • サービスの動作環境を定義する Dockerfile
FROM golang:1.21 as builder
WORKDIR /app
COPY . .
RUN CGO_ENABLED=0 GOOS=linux go build -o sample-app

FROM alpine:3
RUN apk add --no-cache ca-certificates
COPY --from=builder /app/sample-app /sample-app
CMD ["/sample-app"]

このサンプルでは、カスタム OpenTelemetry Collector をビルドするためのファイルが collector サブディレクトリに含まれています。

  • OpenTelemetry Collector の構成ファイル。

    receivers:
      otlp:
        protocols:
          grpc:
          http:
    
    processors:
      batch:
        # batch metrics before sending to reduce API usage
        send_batch_max_size: 200
        send_batch_size: 200
        timeout: 5s
    
      memory_limiter:
        # drop metrics if memory usage gets too high
        check_interval: 1s
        limit_percentage: 65
        spike_limit_percentage: 20
    
      # automatically detect Cloud Run resource metadata                                                                                                                                               
      resourcedetection:
        detectors: [env, gcp]
        timeout: 2s
        override: false
    
      resource:
        attributes:
          # add instance_id as a resource attribute                                                                                                                                                    
        - key: service.instance.id
          from_attribute: faas.id
          action: upsert
          # parse service name from K_SERVICE Cloud Run variable                                                                                                                                       
        - key: service.name
          value: ${env:K_SERVICE}
          action: insert
    
    exporters:
      googlemanagedprometheus: # Note: this is intentionally left blank   
    
    extensions:
      health_check:
    
    service:
      extensions: [health_check]
      pipelines:
        metrics:
          receivers: [otlp]
          processors: [batch, memory_limiter, resourcedetection, resource]
          exporters: [googlemanagedprometheus]
  • 提供された構成をアップストリーム Collector イメージにバンドルする Dockerfile

    FROM otel/opentelemetry-collector-contrib:0.101.0
    
    COPY collector-config.yaml /etc/otelcol-contrib/config.yaml

コードを配布する

コードの配布は、Cloud Build でコンテナ イメージをビルドする、Artifact Registry にコンテナ イメージをアップロードする、Cloud Run にコンテナ イメージをデプロイするという 3 つのステップで構成されます。

コードを配布するには:

  1. サンプル サービス コンテナをビルドし、Artifact Registry に公開します。

    gcloud builds submit --tag REGION-docker.pkg.dev/PROJECT_ID/run-otel/sample-metrics-app

    ビルドが成功すると、ID、作成時間、イメージ名を含む SUCCESS メッセージが表示されます。イメージが Artifact Registry に保存されます。このイメージは必要に応じて再利用できます。

  2. Collector コンテナをビルドして、Artifact Registry に公開します。

    gcloud builds submit collector --tag REGION-docker.pkg.dev/PROJECT_ID/run-otel/otel-collector-metrics

    ビルドが成功すると、ID、作成時間、イメージ名を含む SUCCESS メッセージが表示されます。イメージが Artifact Registry に保存されます。このイメージは必要に応じて再利用できます。

  3. アプリケーションをデプロイします。

    YAML

    1. 以下のように、service.yaml という名前の新しいファイルを作成します。

      apiVersion: serving.knative.dev/v1
      kind: Service
      metadata:
        name: SERVICE-NAME
        annotations:
          run.googleapis.com/launch-stage: BETA
      spec:
        template:
          metadata:
            annotations:
              run.googleapis.com/container-dependencies: "{app:[collector]}"
          spec:
            containers:
            - image: REGION-docker.pkg.dev/PROJECT_ID/run-otel/sample-metrics-app
              name: app
              ports:
              - containerPort: CONTAINER_PORT
              env:
              - name: "OTEL_EXPORTER_OTLP_ENDPOINT"
                value: "http://localhost:4317"
            - image: REGION-docker.pkg.dev/PROJECT_ID/run-otel/otel-collector-metrics
              name: collector
              startupProbe:
                httpGet:
                  path: /
                  port: 13133
      
    2. 以下を置き換えます。
  4. 次のコマンドを使用して新しいサービスを作成します。

    gcloud run services replace service.yaml

    このコマンドはサービスの URL を返します。この URL を使用して、試してみるのサンプル アプリケーションをお試しください。

試してみる

コードを配布するgcloud run コマンドの URL を使用して、サービスに接続し、サンプル指標を生成します。(このコマンドを複数回実行して、より興味深いデータを生成できます)。

curl -H \
"Authorization: Bearer $(gcloud auth print-identity-token)" \
SERVICE_URL

SERVICE_URL は、サービスの URL に置き換えます。

次に、Google Cloud コンソール の [Cloud Monitoring] セクションで Metrics Explorer に移動し、sidecar_sample_counter 指標を選択します。

Metrics Explorer の UI に表示されたカスタム指標

PromQL を使用して指標をクエリすることもできます。たとえば、次のクエリは、Cloud Run インスタンス ID に基づいて指標をフィルタします。

sidecar_sample_counter{instance="INSTANCE_ID"}

INSTANCE_ID は、サービスの任意のインスタンス ID に置き換えます(インスタンス ログまたはメタデータ サーバーから使用可能)。

このクエリにより、次のようなグラフが生成されます。

PromQL によってクエリされるカスタム指標

クリーンアップ

このチュートリアル用に新規プロジェクトを作成した場合は、そのプロジェクトを削除します。既存のプロジェクトを使用し、このチュートリアルで変更を加えずに残す場合は、チュートリアル用に作成したリソースを削除します。

プロジェクトを削除する

課金をなくす最も簡単な方法は、チュートリアル用に作成したプロジェクトを削除することです。

プロジェクトを削除するには:

  1. In the Google Cloud console, go to the Manage resources page.

    Go to Manage resources

  2. In the project list, select the project that you want to delete, and then click Delete.
  3. In the dialog, type the project ID, and then click Shut down to delete the project.

チュートリアル リソースを削除する

  1. このチュートリアルでデプロイした Cloud Run サービスを削除します。

    gcloud run services delete SERVICE-NAME

    SERVICE-NAME は、選択したサービス名です。

    Cloud Run サービスは Google Cloud コンソール から削除することもできます。

  2. チュートリアルの設定時に追加した gcloud のデフォルト リージョン構成を削除します。

     gcloud config unset run/region
    
  3. プロジェクト構成を削除します。

     gcloud config unset project
    
  4. このチュートリアルで作成した他の Google Cloud リソースを削除します。

次のステップ

トレースとログの例を含むその他の例は、GitHub で入手できます。