This page shows you how to optimize GPU obtainability for large-scale batch and AI workloads with GPUs using flex-start with queued provisioning powered by Dynamic Workload Scheduler.
Before reading this page, ensure that you're familiar with the following:
This guide is intended for Machine learning (ML) engineers, Platform admins and operators, and for Data and AI specialists who are interested in using Kubernetes container orchestration capabilities for running batch workloads. For more information about common roles and example tasks that we reference in Google Cloud content, see Common GKE Enterprise user roles and tasks.
How flex-start with queued provisioning works
With flex-start with queued provisioning, GKE allocates all requested resources at the same time. Flex-start with queued provisioning uses the following tools:
- Flex-start with queued provisioning is based on Dynamic Workload Scheduler combined with the Provisioning Request custom resource definition (CRD). These tools manage the capacity allocated based on the available resources and your workload requirements.
- (Optional) Kueue automates the lifecycle of flex-start with queued provisioning requests. Kueue implements Job queueing and automatically handles the Provisioning Request lifecycle.
To use flex-start with queued provisioning, you have to add
the --flex-start
and --enable-queued-provisioning
flags when you create the
node pool.
Use flex-start with queued provisioning for large-scale batch and AI workloads when your workloads meet the following criteria:
- Your workloads have flexible start times.
- Your workloads are required to run across multiple nodes simultaneously.
For smaller workloads that can run on a single node, use flex-start provisioning mode. For more information about GPU provisioning in GKE, see Obtain accelerators for AI workloads.
Before you begin
Before you start, make sure you have performed the following tasks:
- Enable the Google Kubernetes Engine API. Enable Google Kubernetes Engine API
- If you want to use the Google Cloud CLI for this task,
install and then
initialize the
gcloud CLI. If you previously installed the gcloud CLI, get the latest
version by running
gcloud components update
.
- Ensure that you have either:
- an existing Standard cluster in version 1.28.3-gke.1098000 or later.
- an existing Autopilot cluster in version 1.30.3-gke.1451000 or later.
- Ensure that you manage disruptions in workloads that use Dynamic Workload Scheduler to prevent workload disruption.
- Ensure that you're familiar with the limitations of flex-start with queued provisioning.
- When using a Standard cluster, ensure that you maintain at least one node pool without flex-start with queued provisioning enabled for the cluster to function correctly.
Use node pools with flex-start with queued provisioning
This section applies to Standard clusters only.
You can use any of the following methods to designate that flex-start with queued provisioning can work with specific node pools in your cluster:
- Create a node pool.
- Configure node auto-provisioning to create node pools that has flex-start with queued provisioning enabled.
Create a node pool
Create a node pool that has flex-start with queued provisioning enabled by using the gcloud CLI:
gcloud container node-pools create NODEPOOL_NAME \
--cluster=CLUSTER_NAME \
--location=LOCATION \
--enable-queued-provisioning \
--accelerator type=GPU_TYPE,count=AMOUNT,gpu-driver-version=DRIVER_VERSION \
--machine-type=MACHINE_TYPE \
--flex-start \
--enable-autoscaling \
--num-nodes=0 \
--total-max-nodes TOTAL_MAX_NODES \
--location-policy=ANY \
--reservation-affinity=none \
--no-enable-autorepair
Replace the following:
NODEPOOL_NAME
: The name you choose for the node pool.CLUSTER_NAME
: The name of the cluster.LOCATION
: The cluster's Compute Engine region, such asus-central1
.GPU_TYPE
: The GPU type.AMOUNT
: The number of GPUs to attach to nodes in the node pool.DRIVER_VERSION
: the NVIDIA driver version to install. Can be one of the following:default
: Install the default driver version for your GKE version.latest
: Install the latest available driver version for your GKE version. Available only for nodes that use Container-Optimized OS.
TOTAL_MAX_NODES
: the maximum number of nodes to automatically scale for the entire node pool.MACHINE_TYPE
: The Compute Engine machine type for your nodes.Best practice: Use an accelerator-optimized machine type to improve performance and efficiency for AI/ML workloads.
Optionally, you can use the following flags:
--node-locations=COMPUTE_ZONES
: The comma-separated list of one or more zones where GKE creates the GPU nodes. The zones must be in the same region as the cluster. Choose zones that have available GPUs.--enable-gvnic
: This flag enables gVNIC on the GPU node pools to increase network traffic speed.
This command creates a node pool with the following configuration:
- The
--flex-start
flag combined with the--enable-queued-provisioning
flag instructs GKE to create a node pool with flex-start with queued provisioning enabled and to add thecloud.google.com/gke-queued
taint to the node pool. - GKE enables queued provisioning and cluster autoscaling.
- The node pool initially has zero nodes.
- The
--no-enable-autorepair
flag disables automatic repairs, which could disrupt workloads that run on repaired nodes.
Enable node auto-provisioning to create node pools for flex-start with queued provisioning
You can use node auto-provisioning to manage node pools for flex-start with queued provisioning for clusters running version 1.29.2-gke.1553000 or later. When you enable node auto-provisioning, GKE creates node pools with the required resources for the associated workload.
To enable node auto-provisioning, consider the following settings and complete the steps in Configure GPU limits:
- Specify the required resources for flex-start with queued provisioning when you enable
the feature. To list the available
resourceTypes
, run thegcloud compute accelerator-types list
command. - Use the
--no-enable-autoprovisioning-autorepair
flag to disable node node auto-repair. - Let GKE automatically install GPU drivers in auto-provisioned GPU nodes. For more information, see Installing drivers using node auto-provisioning with GPUs.
Run your batch and AI workloads with flex-start with queued provisioning
To run batch workloads with flex-start with queued provisioning use any of the following configurations:
Flex-start with queued provisioning for Jobs with Kueue: You can use flex-start with queued provisioning with Kueue to automate the lifecycle of the Provisioning Request requests. Kueue implements Job queueing and observes the status of the flex-start with queued provisioning. Kueue decides when Jobs should wait and when they should start, based on quotas and a hierarchy for sharing resources fairly among teams.
Flex-start with queued provisioning for Jobs without Kueue: You can use flex-start with queued provisioning without Kueue when you use your own internal batch scheduling tools or platform. You manually create and cancel the Provisioning Request.
Use Kueue to run your batch and AI workloads with flex-start with queued provisioning.
Flex-start with queued provisioning for Jobs with Kueue
The following sections show you how to configure the flex-start with queued provisioning for Jobs with Kueue:
- Flex-start with queued provisioning node pool setup.
- Reservation and flex-start with queued provisioning node pool setup.
This section uses the samples in the dws-examples
directory from the
ai-on-gke
repository. We have published the samples in the dws-examples
directory under the Apache2 license.
You need to have administrator permissions to install Kueue. To gain them, make
sure you are granted the IAM role roles/container.admin
. To
find out more about GKE IAM roles, see
Create IAM allow policies guide.
Prepare your environment
In Cloud Shell, run the following command:
git clone https://github.com/GoogleCloudPlatform/ai-on-gke cd ai-on-gke/tutorials-and-examples/workflow-orchestration/dws-examples
Install the latest Kueue version in your cluster:
VERSION=KUEUE_VERSION kubectl apply --server-side -f https://github.com/kubernetes-sigs/kueue/releases/download/$VERSION/manifests.yaml
Replace KUEUE_VERSION with the latest Kueue version.
If you use Kueue in version earlier than 0.7.0
, change the Kueue feature gate
configuration by setting the ProvisioningACC
feature gate to true
. See
Kueue's feature gates
for more detailed explanation and default gate values. For more information
about Kueue installation, see
Installation.
Create the Kueue resources for the Dynamic Workload Scheduler node pool only setup
With the following manifest, you create a cluster-level queue named
dws-cluster-queue
and the
LocalQueue namespace
named dws-local-queue
. Jobs that refer to dws-cluster-queue
queue in this
namespace use flex-start with queued provisioning to get the GPU resources.
This cluster's queue has high quota limits and only the flex-start with queued provisioning integration is enabled. For more information about Kueue APIs and how to set up limits, see Kueue concepts.
Deploy the LocalQueue:
kubectl create -f ./dws-queues.yaml
The output is similar to the following:
resourceflavor.kueue.x-k8s.io/default-flavor created
admissioncheck.kueue.x-k8s.io/dws-prov created
provisioningrequestconfig.kueue.x-k8s.io/dws-config created
clusterqueue.kueue.x-k8s.io/dws-cluster-queue created
localqueue.kueue.x-k8s.io/dws-local-queue created
If you want to run Jobs that use flex-start with queued provisioning in other namespaces,
you can create additional LocalQueues
using the preceding template.
Run your Job
In the following manifest, the sample Job uses flex-start with queued provisioning:
This manifest includes the following fields that are relevant for the flex-start with queued provisioning configuration:
- The
kueue.x-k8s.io/queue-name: dws-local-queue
label tells GKE that Kueue is responsible for orchestrating that Job. This label also defines the queue where the Job is queued. - The flag
suspend: true
tells GKE to create the Job resource but to not schedule the Pods yet. Kueue changes that flag tofalse
when the nodes are ready for the Job execution. nodeSelector
tells GKE to schedule the Job only on the specified node pool. The value should matchNODEPOOL_NAME
, the name of the node pool with queued provisioning enabled.
Run your Job:
kubectl create -f ./job.yaml
The output is similar to the following:
job.batch/sample-job created
Check the status of your Job:
kubectl describe job sample-job
The output is similar to the following:
Events: Type Reason Age From Message ---- ------ ---- ---- ------- Normal Suspended 5m17s job-controller Job suspended Normal CreatedWorkload 5m17s batch/job-kueue-controller Created Workload: default/job-sample-job-7f173 Normal Started 3m27s batch/job-kueue-controller Admitted by clusterQueue dws-cluster-queue Normal SuccessfulCreate 3m27s job-controller Created pod: sample-job-9qsfd Normal Resumed 3m27s job-controller Job resumed Normal Completed 12s job-controller Job completed
The flex-start with queued provisioning with Kueue integration also supports other workload types available in the open source ecosystem, like the following:
- RayJob
- JobSet v0.5.2 or later
- Kubeflow MPIJob, TFJob, PyTorchJob.
- Kubernetes Pods that are frequently used by workflow orchestrators
- Flux mini cluster
For more information about this support, see Kueue's batch user.
Create the Kueue resources for Reservation and Dynamic Workload Scheduler node pool setup
With the following manifest, you create two ResourceFlavors
tied to two different node pools: reservation-nodepool
and dws-nodepool
. The name of these node pools are only exemplary names. Modify these names according to your node pool configuration.
Additionally, with the ClusterQueue
configuration, incoming Jobs try to use reservation-nodepool
, and if there is no capacity then these Jobs use Dynamic Workload Scheduler to get the GPU resources.
This cluster's queue has high quota limits and only the flex-start with queued provisioning integration is enabled. For more information about Kueue APIs and how to set up limits, see Kueue concepts.
Deploy the manifest using the following command:
kubectl create -f ./dws_and_reservation.yaml
The output is similar to the following:
resourceflavor.kueue.x-k8s.io/reservation created
resourceflavor.kueue.x-k8s.io/dws created
clusterqueue.kueue.x-k8s.io/cluster-queue created
localqueue.kueue.x-k8s.io/user-queue created
admissioncheck.kueue.x-k8s.io/dws-prov created
provisioningrequestconfig.kueue.x-k8s.io/dws-config created
Run your Job
Contrary to the preceding setup, this manifest does not include the
nodeSelector
field because it's filled by Kueue, depending on the free capacity
in the ClusterQueue
.
Run your Job:
kubectl create -f ./job-without-node-selector.yaml
The output is similar to the following:
job.batch/sample-job-v8xwm created
To identify which node pool your Job uses, you need to find out what ResourceFlavor your Job uses.
Troubleshooting
For more information about Kueue's troubleshooting, see Troubleshooting Provisioning Request in Kueue.
Flex-start with queued provisioning for Jobs without Kueue
Define a ProvisioningRequest object
Create a request through the Provisioning Request for each Job. Flex-start with queued provisioning doesn't start the Pods, it only provisions the nodes.
Create the following
provisioning-request.yaml
manifest:Standard
apiVersion: v1 kind: PodTemplate metadata: name: POD_TEMPLATE_NAME namespace: NAMESPACE_NAME labels: cloud.google.com/apply-warden-policies: "true" template: spec: nodeSelector: cloud.google.com/gke-nodepool: NODEPOOL_NAME cloud.google.com/gke-flex-start: "true" tolerations: - key: "nvidia.com/gpu" operator: "Exists" effect: "NoSchedule" containers: - name: pi image: perl command: ["/bin/sh"] resources: limits: cpu: "700m" nvidia.com/gpu: 1 requests: cpu: "700m" nvidia.com/gpu: 1 restartPolicy: Never --- apiVersion: autoscaling.x-k8s.io/API_VERSION kind: ProvisioningRequest metadata: name: PROVISIONING_REQUEST_NAME namespace: NAMESPACE_NAME spec: provisioningClassName: queued-provisioning.gke.io parameters: maxRunDurationSeconds: "MAX_RUN_DURATION_SECONDS" podSets: - count: COUNT podTemplateRef: name: POD_TEMPLATE_NAME
Replace the following:
API_VERSION
: The version of the API, eitherv1
orv1beta1
. For GKE version 1.31.1-gke.1678000 and later, we recommend usingv1
for stability and access to the latest features.NAMESPACE_NAME
: The name of your Kubernetes namespace. The namespace must be the same as the namespace of the Pods.PROVISIONING_REQUEST_NAME
: The name of theProvisioningRequest
. You'll refer to this name in the Pod annotation.MAX_RUN_DURATION_SECONDS
: Optionally, the maximum runtime of a node in seconds, up to the default of seven days. To learn more, see How flex-start with queued provisioning works. You can't change this value after creation of the request. This field is available in GKE version 1.28.5-gke.1355000 or later.COUNT
: Number of Pods requested. The nodes are scheduled atomically in one zone.POD_TEMPLATE_NAME
: The name of thePodTemplate
.NODEPOOL_NAME
: The name you choose for the node pool. Remove if you want to use an auto-provisioned node pool.
GKE might apply validations and mutations to Pods during their creation. The
cloud.google.com/apply-warden-policies
label allows GKE to apply the same validations and mutations to PodTemplate objects. This label is necessary for GKE to calculate node resource requirements for your Pods. The flex-start with queued provisioning integration supports only onePodSet
spec. If you want to mix different Pod templates, use the template that requests the most resources. Mixing different machine types, such as VMs with different GPU types, is not supported.Node auto-provisioning
apiVersion: v1 kind: PodTemplate metadata: name: POD_TEMPLATE_NAME namespace: NAMESPACE_NAME labels: cloud.google.com/apply-warden-policies: "true" template: spec: nodeSelector: cloud.google.com/gke-accelerator: GPU_TYPE cloud.google.com/gke-flex-start: "true" tolerations: - key: "nvidia.com/gpu" operator: "Exists" effect: "NoSchedule" containers: - name: pi image: perl command: ["/bin/sh"] resources: limits: cpu: "700m" nvidia.com/gpu: 1 requests: cpu: "700m" nvidia.com/gpu: 1 restartPolicy: Never --- apiVersion: autoscaling.x-k8s.io/API_VERSION kind: ProvisioningRequest metadata: name: PROVISIONING_REQUEST_NAME namespace: NAMESPACE_NAME spec: provisioningClassName: queued-provisioning.gke.io parameters: maxRunDurationSeconds: "MAX_RUN_DURATION_SECONDS" podSets: - count: COUNT podTemplateRef: name: POD_TEMPLATE_NAME
Replace the following:
API_VERSION
: The version of the API, eitherv1
orv1beta1
. For GKE version 1.31.1-gke.1678000 and later, we recommend usingv1
for stability and access to the latest features.NAMESPACE_NAME
: The name of your Kubernetes namespace. The namespace must be the same as the namespace of the Pods.PROVISIONING_REQUEST_NAME
: The name of theProvisioningRequest
. You'll refer to this name in the Pod annotation.MAX_RUN_DURATION_SECONDS
: Optionally, the maximum runtime of a node in seconds, up to the default of seven days. To learn more, see How flex-start with queued provisioning works. You can't change this value after creation of the request. This field is available in GKE version 1.28.5-gke.1355000 or later.COUNT
: Number of Pods requested. The nodes are scheduled atomically in one zone.POD_TEMPLATE_NAME
: The name of thePodTemplate
.GPU_TYPE
: the type of GPU hardware.
GKE might apply validations and mutations to Pods during their creation. The
cloud.google.com/apply-warden-policies
label allows GKE to apply the same validations and mutations to PodTemplate objects. This label is necessary for GKE to calculate node resource requirements for your Pods.Apply the manifest:
kubectl apply -f provisioning-request.yaml
Configure the Pods
This section uses
Kubernetes Jobs to
configure the Pods. However, you can also use a Kubernetes
JobSet or any other framework
like Kubeflow, Ray, or custom controllers. In the
Job spec,
link the Pods to the
ProvisioningRequest
using the following annotations:
apiVersion: batch/v1
kind: Job
spec:
template:
metadata:
annotations:
autoscaling.x-k8s.io/consume-provisioning-request: PROVISIONING_REQUEST_NAME
autoscaling.x-k8s.io/provisioning-class-name: "queued-provisioning.gke.io"
spec:
...
Prior to GKE version 1.30.3-gke.1854000, you must use the following legacy annotations:
annotations:
cluster-autoscaler.kubernetes.io/consume-provisioning-request: PROVISIONING_REQUEST_NAME
cluster-autoscaler.kubernetes.io/provisioning-class-name: "queued-provisioning.gke.io"
Note that starting with GKE version 1.31.1-gke.1678000
the cluster-autoscaler.kubernetes.io/consume-provisioning-request
and
cluster-autoscaler.kubernetes.io/provisioning-class-name
annotations are
deprecated.
The Pod annotation key consume-provisioning-request
defines which
ProvisioningRequest
to consume. GKE uses the
consume-provisioning-request
and provisioning-class-name
annotations to do
the following:
- To schedule the Pods only in the nodes provisioned by flex-start with queued provisioning.
- To avoid double counting of resource requests between Pods and flex-start with queued provisioning in the cluster autoscaler.
- To inject
safe-to-evict: false
annotation, to prevent the cluster autoscaler from moving Pods between nodes and interrupting batch computations. You can change this behavior by specifyingsafe-to-evict: true
in the Pod annotations.
Observe the status of a Provisioning Request
The status of a Provisioning Request defines if a Pod can be scheduled or not. You can use Kubernetes watches to observe changes efficiently or other tooling you already use for tracking statuses of Kubernetes objects. The following table describes the possible status of a Provisioning Request request and each possible outcome:
Provisioning Request status | Description | Possible outcome |
---|---|---|
Pending | The request was not seen and processed yet. | After processing, the request transitions to Accepted or Failed state. |
Accepted=true |
The request is accepted and is waiting for resources to be available. | The request should transition to Provisioned state, if resources were
found and nodes were provisioned or to Failed state if that was not possible. |
Provisioned=true |
The nodes are ready. | You have 10 minutes to start the Pods to consume provisioned resources. After this time, the cluster autoscaler considers the nodes as not needed and removes them. |
Failed=true |
The nodes can't be provisioned due to
errors. Failed=true is a terminal state. |
Troubleshoot
the condition based on the information in the Reason and
Message fields of the condition.
Create and retry a new Provisioning Request request. |
Provisioned=false |
The nodes haven't been provisioned yet. |
If If If |
Start the Pods
When the Provisioning Request request reaches the Provisioned=true
status, you can
run your Job
to start the Pods. This avoids proliferation of unschedulable Pods for pending
or failed requests, which can impact
kube-scheduler
and cluster autoscaler performance.
Alternatively, if you don't care about having unschedulable Pods, you can create Pods in parallel with the Provisioning Request request.
Cancel the Provisioning Request request
To cancel the request before it's provisioned, you can delete the
ProvisioningRequest
:
kubectl delete provreq PROVISIONING_REQUEST_NAME -n NAMESPACE
In most cases, deleting ProvisioningRequest
stops nodes from being created.
However, depending on timing, for example if nodes were already
being provisioned, the nodes might still end up created. In these cases, the
cluster autoscaler removes the nodes after 10 minutes if no Pods are created.
Troubleshoot quota issues
All VMs provisioned by Provisioning Request requests use preemptible quotas.
The number of ProvisioningRequests
that are in Accepted
state is limited by
a dedicated quota. You configure the quota for each project, one quota
configuration per region.
Check quota in the Google Cloud console
To check the name of the quota limit and current usage in the Google Cloud console, follow these steps:
Go to the Quotas page in the Google Cloud console:
In the
Filter box, select the Metric property, enteractive_resize_requests
, and press Enter.
The default value is 100. To increase the quota, follow the steps listed in Request a higher quota limit guide.
Check if the Provisioning Request request is limited by quota
If your Provisioning Request request is taking longer than expected to be fulfilled, check that the request isn't limited by quota. You might need to request more quota.
For clusters running version 1.29.2-gke.1181000 or later, check whether specific quota limitations are preventing your request from being fulfilled:
kubectl describe provreq PROVISIONING_REQUEST_NAME \
--namespace NAMESPACE
The output is similar the following:
…
Last Transition Time: 2024-01-03T13:56:08Z
Message: Quota 'NVIDIA_P4_GPUS' exceeded. Limit: 1.0 in region europe-west4.
Observed Generation: 1
Reason: QuotaExceeded
Status: False
Type: Provisioned
…
In this example, GKE can't deploy nodes because there isn't
enough quota in the region of europe-west4
.
Migrate node pools from queued provisioning to flex-start provisioning mode
For existing node pools that were created by using the
--enable-queued-provisioning
flag, run the following command to migrate these
node pools to the new flex-start provisioning mode:
gcloud container node-pools update NODEPOOL_NAME \
--cluster=CLUSTER_NAME --flex-start
This operation does the following:
- Update the node pool to a flex-start provisioning mode node pool.
- Apply the pricing of flex-start provisioning mode nodes.
All nodes on clusters running on 1.32.2-gke.1652000 or later, the minimum version for flex-start provisioning mode nodes, use short-lived upgrades.
What's next
- Learn more about GPUs in GKE.
- Learn how to Deploy GPU workloads in Autopilot.