Dynamically allocate devices to workloads with DRA


This page explains how to deploy dynamic resource allocation (DRA) workloads on your Google Kubernetes Engine clusters. On this page, you'll create a ResourceClaimTemplate to request hardware with DRA and then deploy a basic workload to demonstrate how Kubernetes flexibly allocates hardware on your Pods.

This page is intended for Application operators and Data engineers who run workloads like AI/ML or high performance computing (HPC).

About dynamic resource allocation

DRA is a built-in Kubernetes feature that lets you flexibly request, allocate, and share hardware in your cluster among Pods and containers. For more information, see About dynamic resource allocation.

About requesting devices with DRA

When you set up your GKE infrastructure for DRA, the DRA drivers on your nodes create DeviceClass objects in the cluster. A DeviceClass defines a category of devices, such as GPUs, that are available to request for workloads. A platform administrator can optionally deploy additional DeviceClasses that limit which devices you can request in specific workloads.

To request devices within a DeviceClass, you create one of the following objects:

  • ResourceClaim: A ResourceClaim lets a Pod or a user request hardware resources by filtering for certain parameters within a DeviceClass.
  • ResourceClaimTemplate: A ResourceClaimTemplate defines a template that Pods can use to automatically create new per-Pod ResourceClaims.

For more information about ResourceClaim and ResourceClaimTemplate objects, see When to use ResourceClaims and ResourceClaimTemplates.

The examples on this page use a basic ResourceClaimTemplate to request the specified device configuration. For more detailed information, see the ResourceClaimTemplateSpec Kubernetes documentation.

Limitations

  • Node auto-provisioning isn't supported.
  • Autopilot clusters don't support DRA.
  • You can't use the following GPU sharing features:
    • Time-sharing GPUs
    • Multi-instance GPUs
    • Multi-process Service (MPS)

Requirements

To use DRA, your GKE version must be version 1.32.1-gke.1489001 or later.

You should also be familiar with the following requirements and limitations:

Before you begin

Before you start, make sure you have performed the following tasks:

  • Enable the Google Kubernetes Engine API.
  • Enable Google Kubernetes Engine API
  • If you want to use the Google Cloud CLI for this task, install and then initialize the gcloud CLI. If you previously installed the gcloud CLI, get the latest version by running gcloud components update.

Use DRA to deploy workloads

To request per-Pod device allocation, you first create a ResourceClaimTemplate that produces a ResourceClaim to describe your request for GPUs or TPUs, which Kubernetes uses as a template to create new ResourceClaim objects for each Pod in a workload. When you specify the ResourceClaimTemplate in a workload, Kubernetes allocates the requested resources and schedules the Pods on corresponding nodes.

GPU

  1. Save the following manifest as claim-template.yaml:

    apiVersion: resource.k8s.io/v1beta1
    kind: ResourceClaimTemplate
    metadata:
      name: gpu-claim-template
    spec:
      spec:
        devices:
          requests:
          - name: single-gpu
            deviceClassName: gpu.nvidia.com
            allocationMode: ExactCount
            count: 1
    
  2. Create the ResourceClaimTemplate:

    kubectl create -f claim-template.yaml
    
  3. To create a workload that references the ResourceClaimTemplate, save the following manifest as dra-gpu-example.yaml:

    apiVersion: apps/v1
    kind: Deployment
    metadata:
      name: dra-gpu-example
    spec:
      replicas: 1
      selector:
        matchLabels:
          app: dra-gpu-example
      template:
        metadata:
          labels:
            app: dra-gpu-example
        spec:
          containers:
          - name: ctr
            image: ubuntu:22.04
            command: ["bash", "-c"]
            args: ["while [ 1 ]; do date; echo $(nvidia-smi -L || echo Waiting...); sleep 60; done"]
            resources:
              claims:
              - name: single-gpu
          resourceClaims:
          - name: single-gpu
            resourceClaimTemplateName: gpu-claim-template
          tolerations:
          - key: "nvidia.com/gpu"
            operator: "Exists"
            effect: "NoSchedule"
    
  4. Deploy the workload:

    kubectl create -f dra-gpu-example.yaml
    

TPU

  1. Save the following manifest as claim-template.yaml:

    apiVersion: resource.k8s.io/v1beta1
    kind: ResourceClaimTemplate
    metadata:
      name: tpu-claim-template
    spec:
      spec:
        devices:
          requests:
          - name: all-tpus
            deviceClassName: tpu.google.com
            allocationMode: All
    

    This ResourceClaimTemplate requests that GKE allocate an entire TPU node pool to every ResourceClaim.

  2. Create the ResourceClaimTemplate:

    kubectl create -f claim-template.yaml
    
  3. To create a workload that references the ResourceClaimTemplate, save the following manifest as dra-tpu-example.yaml:

    apiVersion: apps/v1
    kind: Deployment
    metadata:
      name: dra-tpu-example
    spec:
      replicas: 1
      selector:
        matchLabels:
          app: dra-tpu-example
      template:
        metadata:
          labels:
            app: dra-tpu-example
        spec:
          containers:
          - name: ctr
            image: ubuntu:22.04
            command:
              - /bin/sh
              - -c
              - |
                echo "Environment Variables:"
                env
                echo "Sleeping indefinitely..."
                sleep infinity
            resources:
              claims:
              - name: all-tpus
          resourceClaims:
          - name: all-tpus
            resourceClaimTemplateName: tpu-claim-template
          tolerations:
          - key: "google.com/tpu"
            operator: "Exists"
            effect: "NoSchedule"
    
  4. Deploy the workload:

    kubectl create -f dra-tpu-example.yaml
    

Verify the hardware allocation

You can verify that your workloads have been allocated hardware by checking the ResourceClaim or by looking at the logs for your Pod.

GPU

  1. Get the ResourceClaim associated with the workload that you deployed:

    kubectl get resourceclaims
    

    The output should resemble the following:

    NAME                                               STATE                AGE
    dra-gpu-example-64b75dc6b-x8bd6-single-gpu-jwwdh   allocated,reserved   9s
    
  2. To get more details about the hardware assigned to the Pod, run the following command:

    kubectl describe resourceclaims RESOURCECLAIM
    

    Replace RESOURCECLAIM with the full name of the ResourceClaim that you got from the output of the previous step.

    The output should resemble the following:

    Name:         dra-gpu-example-64b75dc6b-x8bd6-single-gpu-jwwdh
    Namespace:    default
    Labels:       <none>
    Annotations:  resource.kubernetes.io/pod-claim-name: single-gpu
    API Version:  resource.k8s.io/v1beta1
    Kind:         ResourceClaim
    Metadata:
      Creation Timestamp:  2025-03-31T17:11:37Z
      Finalizers:
        resource.kubernetes.io/delete-protection
      Generate Name:  dra-gpu-example-64b75dc6b-x8bd6-single-gpu-
      Owner References:
        API Version:           v1
        Block Owner Deletion:  true
        Controller:            true
        Kind:                  Pod
        Name:                  dra-gpu-example-64b75dc6b-x8bd6
        UID:                   cb3cb1db-e62a-4961-9967-cdc7d599105b
      Resource Version:        12953269
      UID:                     3e0c3925-e15a-40e9-b552-d03610fff040
    Spec:
      Devices:
        Requests:
          Allocation Mode:    ExactCount
          Count:              1
          Device Class Name:  gpu.nvidia.com
          Name:               single-gpu
    Status:
      Allocation:
        Devices:
          Results:
            Admin Access:  <nil>
            Device:        gpu-0
            Driver:        gpu.nvidia.com
            Pool:          gke-cluster-gpu-pool-11026a2e-zgt1
            Request:       single-gpu
        Node Selector:
          # lines omitted for clarity
      Reserved For:
        Name:      dra-gpu-example-64b75dc6b-x8bd6
        Resource:  pods
        UID:       cb3cb1db-e62a-4961-9967-cdc7d599105b
    Events:        <none>
    
  3. To get logs for the workload that you deployed, run the following command:

    kubectl logs deployment/dra-gpu-example --all-pods=true | grep "GPU"
    

    The output should resemble the following:

    [pod/dra-gpu-example-64b75dc6b-x8bd6/ctr] GPU 0: Tesla T4 (UUID: GPU-2087ac7a-f781-8cd7-eb6b-b00943cc13ef)
    

    The output of these steps shows that GKE allocated one GPU to the Pod.

TPU

  1. Get the ResourceClaim associated with the workload that you deployed:

    kubectl get resourceclaims | grep dra-tpu-example
    

    The output should resemble the following:

    NAME                                               STATE                AGE
    dra-tpu-example-64b75dc6b-x8bd6-all-tpus-jwwdh     allocated,reserved   9s
    
  2. To get more details about the hardware assigned to the Pod, run the following command:

    kubectl describe resourceclaims RESOURCECLAIM -o yaml
    

    Replace RESOURCECLAIM with the full name of the ResourceClaim that you got from the output of the previous step.

    The output should resemble the following:

    apiVersion: resource.k8s.io/v1beta1
    kind: ResourceClaim
    metadata:
      annotations:
        resource.kubernetes.io/pod-claim-name: all-tpus
      creationTimestamp: "2025-03-04T21:00:54Z"
      finalizers:
      - resource.kubernetes.io/delete-protection
      generateName: dra-tpu-example-59b8785697-k9kzd-all-gpus-
      name: dra-tpu-example-59b8785697-k9kzd-all-gpus-gnr7z
      namespace: default
      ownerReferences:
      - apiVersion: v1
        blockOwnerDeletion: true
        controller: true
        kind: Pod
        name: dra-tpu-example-59b8785697-k9kzd
        uid: c2f4fe66-9a73-4bd3-a574-4c3eea5fda3f
      resourceVersion: "12189603"
      uid: 279b5014-340b-4ef6-9dda-9fbf183fbb71
    spec:
      devices:
        requests:
        - allocationMode: All
          deviceClassName: tpu.google.com
          name: all-tpus
    status:
      allocation:
        devices:
          results:
          - adminAccess: null
            device: "0"
            driver: tpu.google.com
            pool: gke-tpu-2ec29193-bcc0
            request: all-tpus
          - adminAccess: null
            device: "1"
            driver: tpu.google.com
            pool: gke-tpu-2ec29193-bcc0
            request: all-tpus
          - adminAccess: null
            device: "2"
            driver: tpu.google.com
            pool: gke-tpu-2ec29193-bcc0
            request: all-tpus
          - adminAccess: null
            device: "3"
            driver: tpu.google.com
            pool: gke-tpu-2ec29193-bcc0
            request: all-tpus
          - adminAccess: null
            device: "4"
            driver: tpu.google.com
            pool: gke-tpu-2ec29193-bcc0
            request: all-tpus
          - adminAccess: null
            device: "5"
            driver: tpu.google.com
            pool: gke-tpu-2ec29193-bcc0
            request: all-tpus
          - adminAccess: null
            device: "6"
            driver: tpu.google.com
            pool: gke-tpu-2ec29193-bcc0
            request: all-tpus
          - adminAccess: null
            device: "7"
            driver: tpu.google.com
            pool: gke-tpu-2ec29193-bcc0
            request: all-tpus
        nodeSelector:
          nodeSelectorTerms:
          - matchFields:
            - key: metadata.name
              operator: In
              values:
              - gke-tpu-2ec29193-bcc0
      reservedFor:
      - name: dra-tpu-example-59b8785697-k9kzd
        resource: pods
        uid: c2f4fe66-9a73-4bd3-a574-4c3eea5fda3f
    
  3. To get logs for the workload that you deployed, run the following command:

    kubectl logs deployment/dra-tpu-example --all-pods=true | grep "TPU"
    

    The output should resemble the following:

    [pod/dra-tpu-example-59b8785697-tm2lc/ctr] TPU_CHIPS_PER_HOST_BOUNDS=2,4,1
    [pod/dra-tpu-example-59b8785697-tm2lc/ctr] TPU_TOPOLOGY_WRAP=false,false,false
    [pod/dra-tpu-example-59b8785697-tm2lc/ctr] TPU_SKIP_MDS_QUERY=true
    [pod/dra-tpu-example-59b8785697-tm2lc/ctr] TPU_RUNTIME_METRICS_PORTS=8431,8432,8433,8434,8435,8436,8437,8438
    [pod/dra-tpu-example-59b8785697-tm2lc/ctr] TPU_WORKER_ID=0
    [pod/dra-tpu-example-59b8785697-tm2lc/ctr] TPU_WORKER_HOSTNAMES=localhost
    [pod/dra-tpu-example-59b8785697-tm2lc/ctr] TPU_TOPOLOGY=2x4
    [pod/dra-tpu-example-59b8785697-tm2lc/ctr] TPU_ACCELERATOR_TYPE=v6e-8
    [pod/dra-tpu-example-59b8785697-tm2lc/ctr] TPU_HOST_BOUNDS=1,1,1
    [pod/dra-tpu-example-59b8785697-tm2lc/ctr] TPU_TOPOLOGY_ALT=false
    [pod/dra-tpu-example-59b8785697-tm2lc/ctr] TPU_DEVICE_0_RESOURCE_CLAIM=77e68f15-fa2f-4109-9a14-6c91da1a38d3
    

    The output of these steps indicates that all of the TPUs in a node pool were allocated to the Pod.

What's next